mp_ops.py 30.5 KB
Newer Older
W
wuhuachaocoding 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle import _C_ops, _legacy_C_ops
from paddle.fluid import core
from paddle.fluid.framework import _non_static_mode
from paddle.fluid.framework import _in_legacy_dygraph
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.data_feeder import check_variable_and_dtype
from paddle.fluid.dygraph import layers
from paddle.distributed import collective
25
from ....communication.reduce import ReduceOp
W
wuhuachaocoding 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
from paddle.fluid.data_feeder import check_dtype
import paddle.fluid.dygraph_utils as dygraph_utils


def _c_identity(tensor, group=None):
    """
    Return a copy of the tensor, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
    if in_dygraph_mode():
        from paddle.autograd import PyLayer

        class c_identity_eager(PyLayer):

            @staticmethod
            def forward(ctx, tensor):
                return _legacy_C_ops.c_identity(tensor, 'use_calc_stream', True,
                                                'ring_id', group.id,
                                                'use_model_parallel', True)

            @staticmethod
            def backward(ctx, dy):
                op_type = collective._get_reduce_op(ReduceOp.SUM, "_c_identity")
                group.process_group.allreduce_on_calc_stream(dy, op_type)
                return dy

        return c_identity_eager.apply(tensor)

    elif _in_legacy_dygraph():
W
wuhuachaocoding 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
        return _legacy_C_ops.c_identity(tensor, 'use_calc_stream', True,
                                        'ring_id', ring_id,
                                        'use_model_parallel', True)
    op_type = 'c_identity'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_identity')

    helper.append_op(type=op_type,
                     inputs={'X': tensor},
                     outputs={'Out': out},
                     attrs={
                         'ring_id': ring_id,
                         'use_calc_stream': True,
                         'use_model_parallel': True,
                     })
    return out


def _c_concat(tensor, group=None):
    """
    Return allgather of the tensor, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
    if group is not None and not group.is_member():
        return
    group = collective._get_default_group() if group is None else group
    ring_id = group.id

    global_rank = collective._get_global_env().rank
    rank = group.rank
    nranks = group.nranks

    if _non_static_mode():
        return _legacy_C_ops.c_concat(tensor, 'ring_id', ring_id,
                                      'use_calc_stream', True, 'rank', rank,
                                      'nranks', nranks, 'use_model_parallel',
                                      True)

    op_type = 'c_concat'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_concat')

    helper.append_op(type=op_type,
                     inputs={'X': tensor},
                     outputs={'Out': out},
                     attrs={
                         'ring_id': ring_id,
                         'use_calc_stream': True,
                         'use_model_parallel': True,
                         'nranks': nranks,
                         'rank': rank
                     })
    return out


def _c_split(tensor, group=None):
    """
    Split tensor evenly among all members, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        rank (int): The rank of the current process.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    global_rank = collective._get_global_env().rank
    rank = global_rank if group is None else group.get_group_rank(global_rank)
    nranks = collective._get_global_env(
    ).world_size if group is None else group.nranks

    if _non_static_mode():
        return _legacy_C_ops.c_split(tensor, 'use_calc_stream', True, 'ring_id',
                                     ring_id, 'rank', rank, 'nranks', nranks,
                                     'use_model_parallel', True)

    op_type = 'c_split'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_split')

    helper.append_op(type=op_type,
                     inputs={'X': tensor},
                     outputs={'Out': out},
                     attrs={
                         'ring_id': ring_id,
                         'use_calc_stream': True,
                         'rank': rank,
                         'nranks': nranks,
                         'use_model_parallel': True,
                     })
    return out


def _mp_allreduce(tensor,
                  op=ReduceOp.SUM,
                  group=None,
                  use_calc_stream=True,
                  use_model_parallel=True):
    """[it is same as allreduce above, but it supports model parallel. And it support inplace startegy]
    """
    if group is not None and not group.is_member():
        return

    if in_dygraph_mode():
        group = collective._get_default_group() if group is None else group
        assert op == ReduceOp.SUM, "Unknown parameter: {}.".format(op)

        from paddle.autograd import PyLayer

        class mp_allreduce_eager(PyLayer):

            @staticmethod
            def forward(ctx, tensor, group, use_calc_stream,
                        use_model_parallel):
                ctx.ring_id = group.id

                if use_calc_stream:
                    op_type = collective._get_reduce_op(op, "_mp_allreduce")
                    group.process_group.allreduce_on_calc_stream(
                        tensor, op_type)
                    return tensor
                else:
                    return _legacy_C_ops.c_allreduce_sum_(
                        tensor, 'use_calc_stream', use_calc_stream, 'ring_id',
                        ring_id, "use_model_parallel", use_model_parallel)

            @staticmethod
            def backward(ctx, dy):
                return _legacy_C_ops.c_identity(dy, 'use_calc_stream', True,
                                                'ring_id', ctx.ring_id,
                                                'use_model_parallel', True)

        return mp_allreduce_eager.apply(tensor, group, use_calc_stream,
                                        use_model_parallel)

    ring_id = 0 if group is None else group.id
    if _in_legacy_dygraph():
        if op == ReduceOp.SUM:
            return _legacy_C_ops.c_allreduce_sum_(tensor, 'use_calc_stream',
                                                  use_calc_stream, 'ring_id',
                                                  ring_id, "use_model_parallel",
                                                  use_model_parallel)
        else:
            raise ValueError("Unknown parameter: {}.".format(op))

    op_type = 'c_allreduce_sum'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        op_type)

    helper.append_op(type=op_type,
                     inputs={'X': tensor},
                     outputs={'Out': out},
                     attrs={
                         'ring_id': ring_id,
                         'use_calc_stream': use_calc_stream,
                         'use_model_parallel': use_model_parallel,
                     })
    return out


def _c_lookup_table(table, index, start_index=0, name=None):
    """
    Lookup table according to index.

    Args:
        table (Tensor): The input Tensor. Its data type
            should be float16, float32, float64.
        index (Tensor): The index to lookup table.
        start_index (int): The initial index for table range.
        name (string): The name of the api

    Returns:
        Tensor.
    """
    if _non_static_mode():
        return _legacy_C_ops.c_embedding(table, index, "start_index",
                                         start_index)

    op_type = 'c_embedding'
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name='table')
    check_variable_and_dtype(index, 'input', ['int32', 'int64'], op_type)
    tmp = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type='c_embedding',
                     inputs={
                         'Ids': index,
                         'W': table
                     },
                     outputs={'Out': tmp},
                     attrs={"start_index": start_index})
    return tmp


class _Linear(layers.Layer):
    """
    Linear
    """

    def __init__(self,
                 in_features,
                 out_features,
                 weight_attr=None,
                 bias_attr=None,
                 name=None):
        super(_Linear, self).__init__()
        self._dtype = self._helper.get_default_dtype()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self.weight = self.create_parameter(shape=[in_features, out_features],
                                            attr=self._weight_attr,
                                            dtype=self._dtype,
                                            is_bias=False)
        self.bias = self.create_parameter(shape=[out_features],
                                          attr=self._bias_attr,
                                          dtype=self._dtype,
                                          is_bias=True)
        self.name = name

    def forward(self, input):
        out = _linear(x=input,
                      weight=self.weight,
                      bias=self.bias,
                      name=self.name)
        return out

    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'in_features={}, out_features={}, dtype={}{}'.format(
            self.weight.shape[0], self.weight.shape[1], self._dtype, name_str)


def _c_softmax_with_cross_entropy(logits,
                                  label,
                                  group=None,
                                  return_softmax=False):
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id
    global_rank = collective._get_global_env().rank
    rank = global_rank if group is None else group.get_group_rank(global_rank)
    nranks = collective._get_global_env(
    ).world_size if group is None else group.nranks

    input_dims = len(list(logits.shape))
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
            'Expected nput_dims - 1 = label_dims or input_dims == label_dims\
             (got nput_dims{}, label_dims{})'.format(input_dims, label_dims))
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=-1)

    if _non_static_mode():
        softmax, loss = _legacy_C_ops.c_softmax_with_cross_entropy(
            logits, label, 'ring_id', ring_id, 'rank', rank, 'nranks', nranks)
        if not return_softmax:
            return loss
        else:
            return loss, softmax

    attrs = {
        'ring_id': ring_id,
        'rank': rank,
        'nranks': nranks,
    }
    helper = LayerHelper('c_softmax_with_cross_entropy', **locals())
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    helper.append_op(type='c_softmax_with_cross_entropy',
                     inputs={
                         'Logits': logits,
                         'Label': label
                     },
                     outputs={
                         'Softmax': softmax,
                         'Loss': loss
                     },
                     attrs=attrs)

    if return_softmax:
        return loss, softmax

    return loss


def _linear(x, weight, bias=None, name=None):
    """
    Fuction Linear
    """
    if _non_static_mode():
        pre_bias = _varbase_creator(dtype=x.dtype)
        _legacy_C_ops.matmul(x, weight, pre_bias, 'transpose_X', False,
                             'transpose_Y', False, "alpha", 1)
        return dygraph_utils._append_bias_in_dygraph(pre_bias,
                                                     bias,
                                                     axis=len(x.shape) - 1)
    else:
        helper = LayerHelper('linear', **locals())
        dtype = x.dtype
        assert len(
            x.shape) < 4, "X latitude is not supported greater than 3 now."

        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'linear')
        check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'], 'linear')

        inputs = {'X': [x], 'Y': [weight]}
        attrs = {
            'transpose_X': False,
            'transpose_Y': False,
            'alpha': 1,
        }
        tmp = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type='matmul_v2',
                         inputs=inputs,
                         outputs={'Out': tmp},
                         attrs=attrs)
        if bias is not None:
            res = helper.create_variable_for_type_inference(dtype)
            helper.append_op(type='elementwise_add',
                             inputs={
                                 'X': [tmp],
                                 'Y': [bias]
                             },
                             outputs={'Out': [res]},
                             attrs={'axis': len(x.shape) - 1})
        else:
            res = tmp
        return res


def _set_var_distributed(var):
    if var is None:
        return

    var.is_distributed = True

    # NOTE: use current_block and find_var_recursive to support while_loop
    startup_block = paddle.static.default_startup_program().current_block()
    main_block = paddle.static.default_main_program().current_block()
    startup_block._find_var_recursive(var.name).is_distributed = True
    main_block._find_var_recursive(var.name).is_distributed = True


def _parallel_linear(x,
                     num_rows,
                     num_cols,
                     axis,
                     param_attr,
                     bias_attr,
                     gather_out,
                     inner_rank,
                     nranks,
                     split_tensor,
                     name,
                     group=None):
    """
    Parallel Linear

    axis the dimension of the parameter of linear layer.
    axis = 0: the row dimension
    axis = 1: the col dimension

    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    if axis == 0:
        if split_tensor:
            x = _c_split(x, group=group)
    else:
        x = _c_identity(x, group=group)

    linear = paddle.nn.Linear(num_rows,
                              num_cols,
                              weight_attr=param_attr,
                              bias_attr=bias_attr,
                              name=name)

    # NOTE: npu linear function use matmul_v2 but linear use matmul
    linear_function = _linear if core.is_compiled_with_npu()\
        else paddle.nn.functional.linear
    linear_out = linear_function(
        x,
        linear.weight,
        # NOTE(wangxi): row split, bias need add after allreduce
        None if axis == 0 else linear.bias,
        linear.name)

    _set_var_distributed(linear.weight)
    # set is_distributed for splited bias
    # if a linear layer is splited by row, each rank would hold a complete bias and they should be the same in each rank.
    # if a linear layer is splited by col, the bias would also be split into each rank as its weight
    if axis == 1 and linear._bias_attr != False:
        _set_var_distributed(linear.bias)

    if not gather_out: return linear_out

    out_shape = list(linear_out.shape)
    out_shape[0] *= 1 if axis == 0 else nranks
    main_block = paddle.static.default_main_program().current_block()
    out = main_block.create_var(
        shape=out_shape,
        dtype=linear_out.dtype,
        type=linear_out.type,
        lod_level=linear_out.lod_level,
        persistable=False,
        is_data=False,
        need_check_feed=linear_out.desc.need_check_feed())
    if axis == 0:
        main_block.append_op(type='c_allreduce_sum',
                             inputs={'X': linear_out},
                             outputs={'Out': out},
                             attrs={
                                 'ring_id': ring_id,
                                 'use_calc_stream': True,
                                 'use_model_parallel': True
                             })
        if linear.bias is not None:
            out = out + linear.bias
    else:
        main_block.append_op(type='c_concat',
                             inputs={'X': linear_out},
                             outputs={'Out': out},
                             attrs={
                                 'rank': inner_rank,
                                 'ring_id': ring_id,
                                 'nranks': nranks,
                                 'use_calc_stream': True,
                                 'use_model_parallel': True
                             })
    return out


def _parallel_embedding(x,
                        per_part_embeddings,
                        origin_size,
                        param_attr,
                        inner_rank,
                        num_partitions,
                        name,
                        group=None):
    """
    Parallel Embedding
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    helper = LayerHelper("_parallel_embedding", **locals())

    per_part_size = per_part_embeddings
    rank = inner_rank

    vocab_start_index = rank * per_part_size
    dtype = helper.get_default_dtype()
    size = [per_part_size, origin_size[1]]

    weight = helper.create_parameter(attr=param_attr,
                                     shape=size,
                                     dtype=dtype,
                                     is_bias=False)

    if num_partitions == 1:
        return paddle.nn.functional.embedding(x,
                                              weight=weight,
                                              padding_idx=None,
                                              sparse=False,
                                              name=name)

    startup_block = paddle.static.default_startup_program().global_block()
    main_block = paddle.static.default_main_program().global_block()
    startup_block.vars[weight.name].is_distributed = True
    main_block.vars[weight.name].is_distributed = True

    output_parallel = _c_lookup_table(weight,
                                      x,
                                      start_index=vocab_start_index,
                                      name=name)
    out = _mp_allreduce(output_parallel,
                        group=group,
                        use_calc_stream=True,
                        use_model_parallel=True)
    return out


def split(x,
          size,
          operation,
          axis=0,
          num_partitions=1,
          gather_out=True,
          weight_attr=None,
          bias_attr=None,
          name=None):
    """

    Split the weight of the specified operation into multiple devices
    and do the computation in parallel.

    Now the following three cases are supported.

    Case 1: Parallel Embedding
        The weight of the embedding operation is a NxM matrix with N rows and M columns.
        With parallel embedding, the weight is split into num_partitions partitions, each
        of which is a matrix with (N/num_partitions + 1) rows and M column where the last
        row as the padding idx.

        Suppose we split the NxM weight into two partitons on device_0 and device_1
        respectively. Then, one each device, the final weight has (N/2 + 1) rows with the
        index range from 0 to N/2. On device_0, all values in the input within [0, N/2 -1]
        keep unchanged and all other values are changed to N/2 which is the padding index and
        are mapped to all zeros after embedding. In the same way, on device_1, the value V in the
        input within [N/2, N-1] will be changed to (V - N/2), and all other values are changed
        to N/2 and are mapped to all zeros after embedding. Finally, the results on the two
        devices are sum-reduced.

        The Embedding put on single card is as shown below:

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_embedding_single.png
            :width: 800
            :height: 350
            :alt: single_embedding
            :align: center

        Parallel Embedding is shown as below:

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_embedding_split.png
            :width: 800
            :alt: split_embedding
            :align: center

    Case 2: Row Parallel Linear
        The weight of the linear operation is a NxM matrix with N rows and M columns.
        With row parallel linear, the weight is split into num_partitions partitions, each
        of which is a matrix with N/num_partitions rows and M column.

        The linear layer put on single card is shown as below, the input variable is represented by X,
        the weight matrix is represented by W and the output vaiable is O. The linear layer on single card is
        simple matrix multiplication operation, O = X * W.

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_single.png
            :width: 800
            :alt: single_linear
            :align: center

        Row Parallel Linear is shown as below. As the name suggests, Row Parallel Linear splits the weight matrix W into
        [[W_row1], [W_row2]] along the row. And accordingly the input is splitted along the column into [X_col1, X_col2] and multiply their
        respective weight matrices. Finally apply AllReduce on the output from each card to get the final output.

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_row.png
            :width: 800
            :alt: split_row
            :align: center

    Case 3: Column Parallel Linear
        The weight of the linear operation is a NxM matrix with N rows and M columns.
        With column parallel linear, the weight is split into num_paratitions partitions, each
        of which is a matrix with N rows and M/num_partitions column.

        The linear layer put on single card has been illustrated on case 2 and Column Parallel Linear
        is shown as below. The Column Parallel Linear splits the weight matrix W into [W_col1, W_col2] along the column and
        these splitted matrices respectively multiply the input. Finally apply AllGather on the output from each card to get the final output.

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_col.png
            :width: 800
            :alt: split_col
            :align: center

    As observed, the column parallel linear and row parallel linear can be combined to skip one ALLGATHER communication
    operator. Furthermore the Attention and MLP can be combined to imporve the performance as shown below.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_col_row.png
            :width: 800
            :alt: split_col_row
            :align: center

    Args:
        x (Tensor): Input tensor. It's data type should be float16, float32, float64, int32 or int64.
        size (list|tuple): A list or tuple with two elements indicating the shape of the weight.
        operation (str): The name of the operation. The supported operations are 'linear' and 'embedding'.
        axis (int, Optional): Indicate along which axis to split the weight. Default: 0.
        num_partitions (int, Optional): How many parts the weight is partitioned. Default: 1.
        gather_out (bool, Optional): Whether to gather the output after computation. By default, the output
            on each partitions will be gathered after computation. Default: True.
        weight_attr (ParamAttr, Optional): The parameter attribute for the learnable
            weights(Parameter) of the specified operation. Default: None.
        bias_attr (ParamAttr, Optional): The parameter attribute for the bias
            of the specified operation. Default: None.
        name (str, Optional): The default value is None. Normally there is no need for user to set this
            property. Default: None. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor.

    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            import paddle.distributed.fleet as fleet

            paddle.enable_static()
            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            fleet.init(is_collective=True)
            data = paddle.randint(0, 8, shape=[10,4])
            emb_out = paddle.distributed.split(
                data,
                (8, 8),
                operation="embedding",
                num_partitions=2)

    """
    assert isinstance(
        size,
        (list, tuple)), ("The type of size for "
                         "paddle.distributed.split must be list or tuple.")
    assert len(size) == 2, ("Number of elements in size of "
                            "paddle.distributed.split must be two.")
    assert isinstance(operation, str), ("The type of operation for "
                                        "paddle.distributed.split must be str.")
    supported_operations = [
        'linear',
        'embedding',
    ]
    assert operation in supported_operations, (
        "The operation for "
        "paddle.distributed.split must be one of {}.".format(
            supported_operations))
    if _non_static_mode():
        raise ValueError(
            "paddle.distributed.split cannot be used in dynamic "
            "graph mode, plese use ParallelEmbedding, ParallelRowLinear, "
            "ParallelColumnLinear instead.")
    else:
        from paddle.distributed.fleet import fleet
        assert fleet._role_maker, ("To use paddle.distributed.split, "
                                   "you must call fleet.init() firstly.")
        rank = fleet.worker_index()
        nranks = fleet.worker_num()

    # rank within a model parallel group
    inner_rank = rank % num_partitions

    if operation == "embedding":
        assert axis == 0, ("We only support to split the weight of embedding "
                           "along the first axis now.")
        assert size[0] % num_partitions == 0, \
            "The length of the vocabulary must be divisible by num_partitions " \
            "but received vocabulary={} num_partitions={}".format(size[0], num_partitions)

        per_part_size = size[0] // num_partitions
        emb_out = _parallel_embedding(x,
                                      per_part_size,
                                      size,
                                      weight_attr,
                                      inner_rank,
                                      num_partitions,
                                      name,
                                      group=None)
        return emb_out
    else:
        should_split = False
        if axis == 0:
            assert size[0] % num_partitions == 0, (
                "Number of rows of the weight for linear ({}) must be"
                " divisible by num_partitions ({})".format(
                    size[0], num_partitions))
            per_part_size = size[0] // num_partitions
            linear_size = (per_part_size, size[1])
            if x.shape[-1] == size[0]: should_split = True

        elif axis == 1:
            assert size[1] % num_partitions == 0, (
                "Number of column of the weight for linear ({}) must be"
                " divisible by num_partitions ({})".format(
                    size[1], num_partitions))
            per_part_size = size[1] // num_partitions
            linear_size = (size[0], per_part_size)
        else:
            raise ValueError("The value of axis must be 0 or 1, but the value "
                             "given is {}.".format(axis))

        linear_out = _parallel_linear(x,
                                      linear_size[0],
                                      linear_size[1],
                                      axis,
                                      weight_attr,
                                      bias_attr,
                                      gather_out,
                                      inner_rank,
                                      num_partitions,
                                      should_split,
                                      name=name,
                                      group=None)
        return linear_out