dist_transpose.py 7.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15
from .common import DistributedOperatorImplContainer
16
from .common import DistributedOperatorImpl
17
from .common import register_distributed_operator_impl_container
18
from .common import register_distributed_operator_impl
C
caozhou 已提交
19
from .common import is_parameter_related
20 21 22 23 24 25
from ..utils import is_dim_shard
from ..utils import is_dim_replicate
from ..utils import is_valid_list_index
from ..utils import compute_compatible_dim_mapping
from ..utils import compute_compatible_dims_mapping
from ..utils import compute_compatible_and_update_dim_mapping
26
from .dist_default import DistributedDefaultImpl0
27
from ..cost import Transpose2OpCost, Transpose2GradOpCost
C
caozhou 已提交
28 29 30
from ..cost import build_comp_desc_from_dist_op, build_comm_desc_from_dist_op, build_dp_costs
from ..cost import build_comp_costs_from_descs
from paddle.distributed.fleet.meta_optimizers.common import OpRole
31
from paddle.distributed.auto_parallel.cost.comm_op_cost import AllreduceSumOpCost
32 33


34
class DistributedTranspose2(DistributedOperatorImplContainer):
35

36 37
    def __init__(self, op_type):
        super(DistributedTranspose2, self).__init__(op_type)
38 39


40
register_distributed_operator_impl_container(
41
    DistributedTranspose2("transpose2"))
42 43 44


class DistributedTranspose2Impl(DistributedOperatorImpl):
45

46
    def __init__(self, name):
47
        super(DistributedTranspose2Impl, self).__init__(name)
48
        self._forward_implemented = False
49
        self._backward_implemented = False
50

51
    def is_input_compatible(self, dist_op):
52 53
        return True

54
    def is_output_compatible(self, dist_op):
55 56
        return True

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
57
    def is_auto_compatible(self, dist_op):
58 59 60 61
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
            return False

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        perm = op_desc.attr('axis')
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_shape_name = op_desc.output('XShape')[0]
        x_shape_dims_mapping = op_dist_attr.get_output_dims_mapping(
            x_shape_name)
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        new_dims_mapping = [-1 for i in range(len(x_dims_mapping))]
        for i in range(len(x_dims_mapping)):
            new_dims_mapping[i] = x_dims_mapping[perm[i]]

        if len(x_dims_mapping) != len(out_dims_mapping):
            return False

        if new_dims_mapping != out_dims_mapping:
            return False

        if x_shape_dims_mapping[0] != -1:
            return False

        if x_shape_dims_mapping[1:] != x_dims_mapping[:]:
            return False

        return True

90
    def update_dims_mapping(self, dist_op):
91
        changed = False
92 93
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_shape_name = op_desc.output('XShape')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        x_shape_dims_mapping = op_dist_attr.get_output_dims_mapping(
            x_shape_name)
        perm = op_desc.attr('axis')

        assert len(x_dims_mapping) == len(perm)

        new_dims_mapping = [-1 for i in range(len(x_dims_mapping))]
        for i in range(len(x_dims_mapping)):
            new_dims_mapping[i] = x_dims_mapping[perm[i]]

        for i in range(len(out_dims_mapping)):
            dim_changed = compute_compatible_and_update_dim_mapping(
                [new_dims_mapping, out_dims_mapping], [i, i])
            if dim_changed:
                changed = True

        for i in range(len(x_dims_mapping)):
            if x_dims_mapping[perm[i]] != new_dims_mapping[i]:
                x_dims_mapping[perm[i]] = new_dims_mapping[i]
                changed = True

        for i in range(len(x_dims_mapping)):
            x_shape_dims_mapping[i + 1] = x_dims_mapping[i]

        return changed

C
caozhou 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        cost = None
        if int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        else:
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        processes = dist_op.dist_attr.process_mesh.processes
        op_type = dist_op.serial_op.type
        cost_mapping = build_comp_costs_from_descs(Transpose2OpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)

        res_cost = [cost_mapping]
        return res_cost

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        res = []
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        dist_attr = dist_op.dist_attr
        process_mesh = dist_attr.process_mesh
        processes = process_mesh.processes
        op_type = dist_op.serial_op.type
        cost_mapping = build_comp_costs_from_descs(Transpose2GradOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        backward_op = dist_op.serial_op
        main_block = backward_op.block
        need_gradient_allreduce = False
        vars = main_block.vars
        for input_name in backward_op.desc.input_names():
            for varname in backward_op.desc.input(input_name):
                if "@GRAD" not in varname and is_parameter_related(
                        varname, main_block):
                    # NOTE input var's dim_mapping of backward op should be the same with input var instead of corresponding varname of forward op
                    var_dim_mapping = dist_attr.get_input_dims_mapping(varname)

                    mesh_shape = process_mesh.topology
                    batch_size_axis = var_dim_mapping[0]
                    if batch_size_axis > -1 and mesh_shape[batch_size_axis] > 1:
                        parallel_axis = batch_size_axis
                        attrs = {"use_calc_stream": True}
                        var_names = [varname + "@GRAD"]
                        build_dp_costs(res, dist_op, ctx, var_names, attrs,
                                       parallel_axis, cluster)
        return res

182 183 184 185
    @staticmethod
    def forward(ctx, *args, **kwargs):
        DistributedDefaultImpl0.forward(ctx, *args, **kwargs)

186 187
    @staticmethod
    def backward(ctx, *args, **kwargs):
188
        DistributedDefaultImpl0.backward(ctx, *args, **kwargs)
189

190 191 192

register_distributed_operator_impl(
    "transpose2", DistributedTranspose2Impl("same_mapping_transpose"))