test_dist_base.py 50.5 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
X
Xin Pan 已提交
16 17
import time

18
import ast
X
Xin Pan 已提交
19 20 21 22 23
import unittest
import os
import sys
import signal
import subprocess
24
import six
W
Wu Yi 已提交
25
import argparse
W
Wu Yi 已提交
26
import pickle
27
import random
W
Wu Yi 已提交
28
import numpy as np
29
import time
30 31

import paddle
32
import paddle.fluid as fluid
33
from paddle.fluid import compiler
34 35 36
import paddle.fluid.dygraph as dygraph
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import DataParallel
37

38 39 40
from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy
import paddle.fluid.incubate.fleet.base.role_maker as role_maker

Y
Yan Xu 已提交
41
RUN_STEP = 5
42
DEFAULT_BATCH_SIZE = 2
43
DIST_UT_PORT = 0
44

T
typhoonzero 已提交
45

46
def print_to_out(out_losses):
T
tianshuo78520a 已提交
47
    sys.stdout.buffer.write(pickle.dumps(out_losses))
48 49 50


def print_to_err(class_name, log_str):
51 52
    localtime = time.asctime(time.localtime(time.time()))
    print_str = localtime + "\t" + class_name + "\t" + log_str
T
tianshuo78520a 已提交
53
    sys.stderr.buffer.write(pickle.dumps(print_str))
G
guru4elephant 已提交
54 55


56 57 58 59
def eprint(*args, **kwargs):
    print(*args, file=sys.stderr, **kwargs)


T
typhoonzero 已提交
60
class TestDistRunnerBase(object):
W
Wu Yi 已提交
61 62 63
    def get_model(self,
                  batch_size=DEFAULT_BATCH_SIZE,
                  lr=0.1,
64
                  single_device=False,
J
Jiangxinz 已提交
65 66
                  use_dgc=False,
                  dist_strategy=None):
T
typhoonzero 已提交
67 68 69
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

70
    @staticmethod
W
Wu Yi 已提交
71 72 73 74 75
    def get_transpiler(trainer_id,
                       main_program,
                       pserver_endpoints,
                       trainers,
                       sync_mode,
76
                       dc_asgd=False,
77
                       current_endpoint=None,
T
tangwei12 已提交
78 79
                       nccl_comm_num=1,
                       hogwild_mode=False):
T
typhoonzero 已提交
80
        # NOTE: import fluid until runtime, or else forking processes will cause error.
81
        config = fluid.DistributeTranspilerConfig()
W
Wu Yi 已提交
82
        config.enable_dc_asgd = dc_asgd
83
        config.sync_mode = sync_mode
T
tangwei12 已提交
84 85
        config.runtime_split_send_recv = hogwild_mode

86 87
        if nccl_comm_num > 1:
            config.nccl_comm_num = nccl_comm_num
88
        # config.runtime_split_send_recv = True
89
        t = fluid.DistributeTranspiler(config=config)
T
typhoonzero 已提交
90 91 92 93
        t.transpile(
            trainer_id=trainer_id,
            program=main_program,
            pservers=pserver_endpoints,
W
Wu Yi 已提交
94
            trainers=trainers,
T
tangwei12 已提交
95
            sync_mode=sync_mode,
96
            current_endpoint=current_endpoint)
T
typhoonzero 已提交
97 98
        return t

99 100 101 102 103 104 105 106 107
    @staticmethod
    def get_lr_scheduler(program):
        lr_sheduler = None
        if hasattr(program, 'lr_sheduler'):
            from paddle.optimizer.lr import LRScheduler
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
        return lr_sheduler

W
Wu Yi 已提交
108
    def run_pserver(self, args):
W
Wu Yi 已提交
109
        self.lr = args.lr
110
        self.get_model(batch_size=args.batch_size)
111
        # NOTE: pserver should not call memory optimize
T
tangwei12 已提交
112 113 114 115 116 117 118 119 120

        t = self.get_transpiler(
            trainer_id=args.trainer_id,
            main_program=fluid.default_main_program(),
            pserver_endpoints=args.endpoints,
            trainers=args.trainers,
            sync_mode=args.sync_mode,
            dc_asgd=args.dc_asgd,
            hogwild_mode=args.hogwild)
W
Wu Yi 已提交
121 122 123
        pserver_prog = t.get_pserver_program(args.current_endpoint)
        startup_prog = t.get_startup_program(args.current_endpoint,
                                             pserver_prog)
Y
Yancey1989 已提交
124

T
typhoonzero 已提交
125 126 127
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
128
        print_to_err(type(self).__name__, "run pserver startup program done.")
T
typhoonzero 已提交
129
        exe.run(pserver_prog)
130
        print_to_err(type(self).__name__, "run pserver main program done.")
T
typhoonzero 已提交
131

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    def run_pipeline_trainer(self, args):
        self.lr = args.lr

        dist_strategy = DistributedStrategy()
        test_program, avg_cost, train_reader, test_reader, batch_acc, predict, data_loader = \
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)

        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        eprint(type(self).__name__, "device_id: %d." % device_id)
        place = fluid.CUDAPlace(device_id)

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        data_loader.set_sample_list_generator(train_reader, place)
        data_loader.start()
        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
151 152 153

        main_program = fluid.default_main_program()
        lr_sheduler = self.get_lr_scheduler(main_program)
154
        for i in six.moves.xrange(RUN_STEP):
155
            loss = exe.run(main_program, fetch_list=[avg_cost])
156 157 158
            loss = loss[0] if loss else None
            out_losses.append(loss)
            print_to_err(type(self).__name__, "run step %d finished" % i)
159 160 161
            if lr_sheduler is not None:
                lr_sheduler.step()

162
        data_loader.reset()
163 164
        print_to_err(type(self).__name__, "trainer run finished")

T
tianshuo78520a 已提交
165
        sys.stdout.buffer.write(pickle.dumps(out_losses))
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
    def run_use_fleet_api_20_trainer(self, args):
        """
        1. remove codes for DistributedStrategy and leave the DistributedStrategy part to get_model()
        2. to run with fleet 2.0 api, set flags _use_fleet_api and _use_fleet_api_20 to True
        3. for now, not support test for model save
        """
        assert args.update_method == "nccl2" or "bkcl"

        self.lr = args.lr
        print_to_err("use_fleet 2.0", "fleet.node_num:")

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
            self.get_model(batch_size=args.batch_size)

        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
            var
            for var in fluid.default_main_program().global_block().vars.values()
            if var.is_data
        ]

        eprint("feed_var_list:", feed_var_list)

        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
            if args.update_method != "local" and args.use_reader_alloc:
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss, = exe.run(fluid.default_main_program(),
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
        print_to_err(type(self).__name__, "dist losses: {}".format(out_losses))

T
tianshuo78520a 已提交
232
        sys.stdout.buffer.write(pickle.dumps(out_losses))
233

234 235
    def run_use_fleet_api_trainer(self, args):
        assert args.update_method == "nccl2" or "bkcl"
236 237 238 239 240 241 242 243

        self.lr = args.lr

        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1

        dist_strategy = DistributedStrategy()
        dist_strategy.exec_strategy = exec_strategy
T
tangwei12 已提交
244
        dist_strategy.fuse_memory_size = 1  # MB
245
        dist_strategy.fuse_laryer_size = 1
246 247 248 249
        if args.use_local_sgd:
            dist_strategy.use_local_sgd = True
        if args.ut4grad_allreduce:
            dist_strategy._ut4grad_allreduce = True
250 251
        if args.sync_batch_norm:
            dist_strategy.sync_batch_norm = True
252 253 254

        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
255
        print_to_err("use_fleet", "fleet.node_num:")
T
tangwei12 已提交
256 257
        # "fleet.node_id:", fleet.node_id(),
        # "fleet.trainer_num:", fleet.worker_num())
258 259

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
T
tangwei12 已提交
260
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)
261 262 263 264

        trainer_prog = fleet._origin_program
        dist_prog = fleet.main_program

265 266 267 268 269 270 271 272 273 274
        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )
275 276 277 278 279 280 281 282 283 284

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

285 286 287 288 289 290 291
        eprint("feed_var_list:", feed_var_list)

        # tmp add this code to pass python35 gcc8 CI
        # Fixme(gongweibao, wangxi), need fix fleet api program order
        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

292 293 294 295 296 297 298 299 300 301 302 303 304 305
        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
            if args.update_method != "local" and args.use_reader_alloc:
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

306
        print_to_err(type(self).__name__, "begin to train on trainer")
307 308 309 310 311 312
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss, = exe.run(dist_prog,
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
313 314
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
315

T
tianshuo78520a 已提交
316
        sys.stdout.buffer.write(pickle.dumps(out_losses))
317

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
        if args.save_model:
            model_save_dir = "/tmp"
            if fleet.worker_index() == 0:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer")
            else:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables_2")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables_2")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer_2")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer_2")
            fluid.io.save_persistables(exe, model_save_dir_fluid,
                                       fleet._origin_program)
            fleet.save_persistables(executor=exe, dirname=model_save_dir_fleet)
            feeded_var_names = [var.name for var in feed_var_list]
            fluid.io.save_inference_model(infer_save_dir_fluid,
                                          feeded_var_names, [avg_cost], exe,
                                          fleet._origin_program)
            fleet.save_inference_model(exe, infer_save_dir_fleet,
                                       feeded_var_names, [avg_cost])

348
    def run_trainer(self, args):
W
Wu Yi 已提交
349
        self.lr = args.lr
W
Wu Yi 已提交
350 351 352
        if args.nccl2_reduce_layer_local_run:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, single_device=True)
353 354 355
        elif args.use_dgc:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, use_dgc=args.use_dgc)
W
Wu Yi 已提交
356 357 358
        else:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size)
359

W
Wu Yi 已提交
360
        if args.update_method == "pserver":
361
            print_to_err(
362 363
                type(self).__name__,
                "begin to run transpile on trainer with pserver mode")
T
tangwei12 已提交
364 365 366 367 368 369 370 371 372
            t = self.get_transpiler(
                trainer_id=args.trainer_id,
                main_program=fluid.default_main_program(),
                pserver_endpoints=args.endpoints,
                trainers=args.trainers,
                sync_mode=args.sync_mode,
                dc_asgd=args.dc_asgd,
                hogwild_mode=args.hogwild)

T
typhoonzero 已提交
373
            trainer_prog = t.get_trainer_program()
374
            print_to_err(
375 376
                type(self).__name__,
                "get trainer program done with pserver mode.")
W
Wu Yi 已提交
377
        elif args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
W
Wu Yi 已提交
378 379 380
            # transpile for nccl2
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
381
            config.nccl_comm_num = args.nccl_comm_num
382 383 384
            if args.use_hallreduce:
                config.use_hierarchical_allreduce = True
                config.hierarchical_allreduce_inter_nranks = args.hallreduce_inter_nranks
385
            print_to_err(
386 387
                type(self).__name__,
                "begin to run transpile on trainer with nccl2 mode")
W
Wu Yi 已提交
388 389 390 391 392 393 394
            nccl2_t = fluid.DistributeTranspiler(config=config)
            nccl2_t.transpile(
                args.trainer_id,
                program=fluid.default_main_program(),
                startup_program=fluid.default_startup_program(),
                trainers=args.endpoints,
                current_endpoint=args.current_endpoint)
395
            print_to_err(
396 397
                type(self).__name__,
                "get trainer program done. with nccl2 mode")
W
Wu Yi 已提交
398
            trainer_prog = fluid.default_main_program()
T
typhoonzero 已提交
399
        else:
400
            print_to_err(
401 402
                type(self).__name__,
                "do nothing about main program, just use it")
T
typhoonzero 已提交
403
            trainer_prog = fluid.default_main_program()
404
            print_to_err(type(self).__name__, "use main program done.")
T
typhoonzero 已提交
405

406 407 408
        # FIXME(gongwb):wait pserver initialization.
        time.sleep(1)

409
        if args.use_cuda:
410 411
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
412 413 414
        else:
            place = fluid.CPUPlace()

415 416
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
417
        print_to_err(type(self).__name__, "run worker startup program done.")
T
typhoonzero 已提交
418

W
Wu Yi 已提交
419 420
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1
421

W
Wu Yi 已提交
422
        build_stra = fluid.BuildStrategy()
423 424 425
        # FIXME force disable enable_inplace and memory_optimize
        build_stra.enable_inplace = False
        build_stra.memory_optimize = False
W
Wu Yi 已提交
426

427 428 429 430
        if args.fuse_all_reduce is not None:
            sys.stderr.write('fuse_all_reduce={}'.format(args.fuse_all_reduce))
            build_stra.fuse_all_reduce_ops = args.fuse_all_reduce

T
tangwei12 已提交
431 432 433
        if args.hogwild:
            build_stra.async_mode = True

434 435 436
        if args.enable_backward_deps:
            build_stra.enable_backward_optimizer_op_deps = True

W
Wu Yi 已提交
437 438 439 440 441
        if args.use_reduce:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
        else:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce

W
Wu Yi 已提交
442
        pass_builder = None
X
Xin Pan 已提交
443
        if args.batch_merge_repeat > 1:
X
fix  
Xin Pan 已提交
444
            pass_builder = build_stra._finalize_strategy_and_create_passes()
445
            mypass = pass_builder.insert_pass(0, "multi_batch_merge_pass")
446
            mypass.set("num_repeats", args.batch_merge_repeat)
X
Xin Pan 已提交
447

W
Wu Yi 已提交
448
        if args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
449 450
            build_stra.num_trainers = len(args.endpoints.split(","))
            build_stra.trainer_id = args.trainer_id
W
Wu Yi 已提交
451
        else:
W
Wu Yi 已提交
452
            # case args.update_method == "nccl2_reduce_layer":
453 454
            build_stra.num_trainers = 1
            build_stra.trainer_id = 0
W
Wu Yi 已提交
455

456
        print_to_err(type(self).__name__, "begin to compile with data parallel")
X
Xin Pan 已提交
457
        binary = compiler.CompiledProgram(trainer_prog).with_data_parallel(
W
Wu Yi 已提交
458
            loss_name=avg_cost.name,
W
Wu Yi 已提交
459
            build_strategy=build_stra,
W
Wu Yi 已提交
460
            exec_strategy=exec_strategy)
461
        print_to_err(type(self).__name__, "program compiled with data parallel")
T
typhoonzero 已提交
462 463 464 465 466 467 468

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
469
        reader_generator = train_reader()
T
typhoonzero 已提交
470

471 472
        def get_data():
            origin_batch = next(reader_generator)
W
Wu Yi 已提交
473
            if args.update_method != "local" and args.use_reader_alloc:
474 475 476 477 478 479 480
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch
T
typhoonzero 已提交
481

482
        lr_scheduler = self.get_lr_scheduler(trainer_prog)
483
        print_to_err(type(self).__name__, "begin to train on trainer")
W
Wu Yi 已提交
484
        out_losses = []
485
        for i in six.moves.xrange(RUN_STEP):
486 487
            loss, = exe.run(binary,
                            fetch_list=[avg_cost.name],
488
                            feed=feeder.feed(get_data()))
W
Wu Yi 已提交
489
            out_losses.append(loss[0])
490
            print_to_err(type(self).__name__, "run step %d finished" % i)
491 492 493
            if lr_scheduler is not None:
                lr_scheduler.step()

494
        print_to_err(type(self).__name__, "trainer run finished")
495

496
        print_to_out(out_losses)
T
typhoonzero 已提交
497 498


499 500 501 502 503 504 505 506 507
class TestParallelDyGraphRunnerBase(object):
    def get_model(self):
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

    def run_one_loop(self, model, opt, data):
        raise NotImplementedError(
            "train_one_loop should be implemented by the child classes.")

508 509 510 511 512 513 514 515 516 517
    def _get_data(self, batch, args):
        if args.update_method != "local":
            new_batch = []
            for offset, item in enumerate(batch):
                if offset % 2 == args.trainer_id:
                    new_batch.append(item)
            return new_batch
        else:
            return batch

518
    def run_trainer(self, args):
Y
Yan Xu 已提交
519

520
        seed = 90
521 522 523 524 525 526 527 528
        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            assert ("Only support CUDAPlace or XPUPlace for now.")
529 530 531 532

        with fluid.dygraph.guard(place):
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
Y
Yan Xu 已提交
533 534
            np.random.seed(seed)
            import random
535
            random.seed(seed)
536 537
            model, train_reader, opt = self.get_model()
            nranks = len(args.endpoints.split(",")) if args.endpoints else 1
Y
Yan Xu 已提交
538

539 540
            #if args.update_method == "nccl2":
            if args.update_method == "nccl2" or args.update_method == "bkcl":
541 542 543 544 545
                strategy = dygraph.parallel.ParallelStrategy()
                strategy.nranks = nranks
                strategy.local_rank = args.trainer_id
                strategy.trainer_endpoints = args.endpoints.split(",")
                strategy.current_endpoint = args.current_endpoint
546
                print_to_err(
547 548
                    type(self).__name__,
                    "begin to prepare context in dygraph with nccl2")
549
                dygraph.parallel.prepare_context(strategy)
550 551 552 553 554 555
                if not args.find_unused_parameters:
                    model = dygraph.parallel.DataParallel(
                        model, strategy, find_unused_parameters=False)
                else:
                    model = dygraph.parallel.DataParallel(
                        model, strategy, find_unused_parameters=True)
556
                print_to_err(type(self).__name__, "model built in dygraph")
557
            out_losses = []
558
            print_to_err(type(self).__name__, "begin to run dygraph training")
559
            for step_id, data in enumerate(train_reader()):
560
                data = self._get_data(data, args)
561 562 563
                if step_id == RUN_STEP:
                    break
                loss = self.run_one_loop(model, opt, data)
G
guru4elephant 已提交
564
                if step_id % 10 == 0:
565
                    print_to_err(
566
                        type(self).__name__,
567
                        "loss at step %d: %f" % (step_id, loss.numpy()))
Y
Yan Xu 已提交
568
                out_losses.append(loss.numpy())
569 570 571 572

                loss.backward()

                opt.minimize(loss)
573 574
                if not args.accumulate_gradient:
                    model.clear_gradients()
575
        print_to_out(out_losses)
576

577 578 579 580 581 582 583 584 585
    def run_trainer_with_spawn(self, args):
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
586
        random.seed(seed)
587 588 589 590 591 592 593 594 595 596
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

        # 3. init parallel env
        if args.update_method == "nccl2":
            paddle.distributed.init_parallel_env()

        # 4. train model
        model, train_reader, opt = self.get_model()
        if args.update_method == "nccl2":
597 598 599 600
            if args.find_unused_parameters:
                model = paddle.DataParallel(model, find_unused_parameters=True)
            else:
                model = paddle.DataParallel(model, find_unused_parameters=False)
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.minimize(loss)
            model.clear_gradients()
        return out_losses

616
    def run_use_fleet_api_trainer(self, args):
617 618 619 620 621 622 623 624 625 626
        import paddle.distributed.fleet as fleet
        import paddle.distributed.fleet.base.role_maker as role_maker
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
627
        random.seed(seed)
628 629 630
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

631 632
        # set strategy
        strategy = fleet.DistributedStrategy()
633 634
        if args.find_unused_parameters:
            strategy.find_unused_parameters = True
635

636
        # 3. init parallel env
637
        if args.update_method == "nccl2" or "bkcl":
638
            fleet.init(is_collective=True, strategy=strategy)
639 640 641

        # 4. train model
        model, train_reader, opt = self.get_model()
642
        if args.update_method == "nccl2" or "bkcl":
643 644 645 646 647 648 649 650 651 652 653 654 655 656
            opt = fleet.distributed_optimizer(opt)
            model = fleet.distributed_model(model)

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.step()
657 658
            if not args.accumulate_gradient:
                opt.clear_grad()
659 660
        print_to_out(out_losses)

661

T
typhoonzero 已提交
662
def runtime_main(test_class):
W
Wu Yi 已提交
663 664 665 666
    parser = argparse.ArgumentParser(description='Run dist test.')
    parser.add_argument(
        '--role', type=str, required=True, choices=['pserver', 'trainer'])
    parser.add_argument('--endpoints', type=str, required=False, default="")
W
Wu Yi 已提交
667 668 669 670
    parser.add_argument(
        '--update_method',
        type=str,
        default="local",
671
        choices=["pserver", "nccl2", "bkcl", "local", "nccl2_reduce_layer"])
W
Wu Yi 已提交
672 673
    parser.add_argument('--trainer_id', type=int, required=False, default=0)
    parser.add_argument('--trainers', type=int, required=False, default=1)
674
    parser.add_argument('--nccl_comm_num', type=int, required=False, default=1)
675 676
    parser.add_argument('--enable_backward_deps', action='store_true')
    parser.add_argument('--use_hallreduce', action='store_true')
677
    parser.add_argument('--use_pipeline', action='store_true')
678
    parser.add_argument('--use_fleet_api', action='store_true')
679
    parser.add_argument('--use_fleet_api_20', action='store_true')
680 681
    parser.add_argument('--use_local_sgd', action='store_true')
    parser.add_argument('--ut4grad_allreduce', action='store_true')
682
    parser.add_argument(
683
        '--hallreduce_inter_nranks', type=int, required=False, default=2)
W
Wu Yi 已提交
684 685 686
    parser.add_argument(
        '--current_endpoint', type=str, required=False, default="")
    parser.add_argument('--sync_mode', action='store_true')
687
    parser.add_argument('--use_cuda', action='store_true')
688
    parser.add_argument('--use_xpu', action='store_true')
689
    parser.add_argument('--use_dgc', action='store_true')
690
    parser.add_argument('--accumulate_gradient', action='store_true')
691
    parser.add_argument('--find_unused_parameters', action='store_true')
W
Wu Yi 已提交
692
    parser.add_argument('--use_reduce', action='store_true')
W
Wu Yi 已提交
693
    parser.add_argument('--dc_asgd', action='store_true')
T
tangwei12 已提交
694
    parser.add_argument('--hogwild', action='store_true')
695
    parser.add_argument('--save_model', action='store_true')
696
    parser.add_argument(
W
Wu Yi 已提交
697
        '--use_reader_alloc', action='store_true', required=False)
698
    parser.add_argument('--batch_size', required=False, type=int, default=2)
W
Wu Yi 已提交
699
    parser.add_argument('--lr', required=False, type=float, default=0.001)
700 701
    parser.add_argument(
        '--batch_merge_repeat', required=False, type=int, default=1)
W
Wu Yi 已提交
702 703 704 705 706
    parser.add_argument(
        '--nccl2_reduce_layer_local_run',
        required=False,
        type=bool,
        default=False)
707
    parser.add_argument('--sync_batch_norm', action='store_true')
708 709 710 711 712
    parser.add_argument(
        '--fuse_all_reduce',
        required=False,
        type=ast.literal_eval,
        default=None)
W
Wu Yi 已提交
713 714

    args = parser.parse_args()
T
typhoonzero 已提交
715 716

    model = test_class()
W
Wu Yi 已提交
717
    if args.role == "pserver" and args.update_method == "pserver":
W
Wu Yi 已提交
718
        model.run_pserver(args)
719 720
    elif args.use_fleet_api:
        model.run_use_fleet_api_trainer(args)
721 722
    elif args.use_fleet_api_20:
        model.run_use_fleet_api_20_trainer(args)
723 724
    elif args.use_pipeline:
        model.run_pipeline_trainer(args)
T
typhoonzero 已提交
725
    else:
726
        model.run_trainer(args)
X
Xin Pan 已提交
727

M
minqiyang 已提交
728

M
minqiyang 已提交
729
import paddle.compat as cpt
Y
Yancey1989 已提交
730 731
import socket
from contextlib import closing
M
minqiyang 已提交
732

X
Xin Pan 已提交
733 734

class TestDistBase(unittest.TestCase):
W
Wu Yi 已提交
735 736 737
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

738 739 740
    def _after_setup_config(self):
        if self._enforce_place == "CPU":
            self.__use_cuda = False
741
            self.__use_xpu = False
742
            self._use_dgc = False
743 744
        elif self._enforce_place == "GPU":
            self.__use_cuda = True
745 746 747 748 749
            self.__use_xpu = False
        elif self._enforce_place == "XPU":
            self.__use_cuda = False
            self.__use_xpu = True
            self._use_dgc = False
750 751 752 753 754
        else:
            if fluid.core.is_compiled_with_cuda():
                self.__use_cuda = True
            else:
                self.__use_cuda = False
755 756 757 758
                self._use_dgc = False

        if self._use_reduce:
            assert not self._use_dgc
759

X
Xin Pan 已提交
760 761 762
    def setUp(self):
        self._trainers = 2
        self._pservers = 2
Y
Yancey1989 已提交
763
        self._port_set = set()
M
minqiyang 已提交
764
        self._python_interp = sys.executable
W
Wu Yi 已提交
765
        self._sync_mode = True
T
tangwei12 已提交
766
        self._hogwild_mode = False
767
        self._enforce_place = None
W
Wu Yi 已提交
768
        self._use_reduce = False
W
Wu Yi 已提交
769
        self._dc_asgd = False  # must use with async mode
770
        self._use_reader_alloc = True
W
Wu Yi 已提交
771
        self._nccl2_mode = False
772
        self._bkcl_mode = False
773
        self._pipeline_mode = False
774
        self._mp_mode = False
W
Wu Yi 已提交
775 776 777 778 779
        # FIXME(typhoonzero): I added this stupid argument to enable
        # testing allreduce layers, which users can call layers.allreduce
        # to accumulate tensors at anywhere. Find a better way to do this
        # test, reduce check this argument everywhere.
        self._nccl2_reduce_layer = False
W
Wu Yi 已提交
780
        self._lr = 0.001
781
        self._use_dgc = False
782
        self._dygraph = False
783
        self._nccl_comm_num = 1
784
        self._enable_backward_deps = False
785
        self._use_fleet_api = False
786
        self._use_fleet_api_20 = False
787 788
        self._use_local_sgd = False
        self._ut4grad_allreduce = False
789
        self._use_hallreduce = False
790
        self._save_model = False
791
        self._fuse_all_reduce = None
792
        self._accumulate_gradient = False
793
        self._find_unused_parameters = False
W
Wu Yi 已提交
794
        self._setup_config()
795 796 797 798 799 800 801 802 803 804 805 806 807 808

        global DIST_UT_PORT
        if DIST_UT_PORT == 0 and os.getenv("PADDLE_DIST_UT_PORT"):
            DIST_UT_PORT = int(os.getenv("PADDLE_DIST_UT_PORT"))

        if DIST_UT_PORT == 0:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                self._find_free_port(), self._find_free_port())
        else:
            print("set begin_port:", DIST_UT_PORT)
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                DIST_UT_PORT, DIST_UT_PORT + 1)
            DIST_UT_PORT += 2

809
        self._after_setup_config()
X
Xin Pan 已提交
810

Y
Yancey1989 已提交
811
    def _find_free_port(self):
Y
Yancey1989 已提交
812 813 814 815
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
816
                print_to_err(
817
                    type(self).__name__, "socket name: %s" % s.getsockname()[1])
Y
Yancey1989 已提交
818 819 820 821 822 823 824
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port
Y
Yancey1989 已提交
825

826 827 828 829 830
    def start_pserver(self,
                      model_file,
                      check_error_log,
                      required_envs,
                      log_name=""):
X
Xin Pan 已提交
831
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
832 833 834 835 836 837 838 839
        ps_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            required_envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            ps_cmd += " -m coverage run --branch -p"

        ps_cmd += " %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --update_method pserver"

W
Wu Yi 已提交
840
        ps0_cmd = ps_cmd % \
841 842
                  (self._python_interp, model_file, self._ps_endpoints, ps0_ep,
                   self._trainers)
W
Wu Yi 已提交
843
        ps1_cmd = ps_cmd % \
844 845
                  (self._python_interp, model_file, self._ps_endpoints, ps1_ep,
                   self._trainers)
W
Wu Yi 已提交
846 847 848 849

        if self._sync_mode:
            ps0_cmd += " --sync_mode"
            ps1_cmd += " --sync_mode"
X
Xin Pan 已提交
850

851 852
        print(ps0_cmd)
        print(ps1_cmd)
853 854
        ps0_pipe = open(log_name + "_ps0_err.log", "wb")
        ps1_pipe = open(log_name + "_ps1_err.log", "wb")
G
gongweibao 已提交
855

856
        print_to_err(type(self).__name__, "going to start pserver process 0")
X
Xin Pan 已提交
857
        ps0_proc = subprocess.Popen(
858 859 860 861
            ps0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps0_pipe,
            env=required_envs)
862
        print_to_err(type(self).__name__, "going to start pserver process 1")
X
Xin Pan 已提交
863
        ps1_proc = subprocess.Popen(
864 865 866 867
            ps1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps1_pipe,
            env=required_envs)
G
gongweibao 已提交
868

869
        return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe
X
Xin Pan 已提交
870

871 872 873 874 875
    def _run_local(self,
                   model,
                   envs,
                   check_error_log=False,
                   batch_size=DEFAULT_BATCH_SIZE,
876
                   batch_merge_repeat=1,
877
                   log_name="",
878
                   devices="0"):
G
gongweibao 已提交
879

880 881 882 883 884 885
        cmd = self._python_interp

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            cmd += " -m coverage run --branch -p"

886 887
        cmd += " %s --role trainer --update_method local --lr %f" % (model,
                                                                     self._lr)
888

889 890 891 892
        if batch_size != DEFAULT_BATCH_SIZE:
            cmd += " --batch_size %d" % batch_size
        if batch_merge_repeat > 1:
            cmd += " --batch_merge_repeat %d" % batch_merge_repeat
W
Wu Yi 已提交
893 894
        if self._nccl2_reduce_layer:
            cmd += " --nccl2_reduce_layer_local_run 1"
895

896
        if self.__use_cuda:
897
            cmd += " --use_cuda"
W
Wu Yi 已提交
898
            env_local = {
899 900 901 902 903 904 905 906
                "CUDA_VISIBLE_DEVICES": devices,
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
        elif self.__use_xpu:
            cmd += " --use_xpu"
            env_local = {
                "FLAGS_selected_xpus": devices,
W
Wu Yi 已提交
907 908 909
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
910 911 912
        else:
            env_local = {'CPU_NUM': '1'}

913
        # not use dgc in single card
914
        if len(devices) > 1 and self._use_dgc:
915 916
            cmd += " --use_dgc"

917 918 919
        if self._accumulate_gradient:
            cmd += " --accumulate_gradient"

920 921 922
        if self._find_unused_parameters:
            cmd += " --find_unused_parameters"

W
Wu Yi 已提交
923 924
        env_local.update(envs)
        print("local_cmd: {}, env: {}".format(cmd, env_local))
G
gongweibao 已提交
925

926
        if check_error_log:
927
            err_log = open(log_name + "_local.log", "wb")
G
gongweibao 已提交
928
            local_proc = subprocess.Popen(
929
                cmd.split(" "),
G
gongweibao 已提交
930
                stdout=subprocess.PIPE,
931
                stderr=err_log,
W
Wu Yi 已提交
932
                env=env_local)
G
gongweibao 已提交
933 934
        else:
            local_proc = subprocess.Popen(
935
                cmd.split(" "),
G
gongweibao 已提交
936
                stdout=subprocess.PIPE,
937
                stderr=subprocess.PIPE,
W
Wu Yi 已提交
938
                env=env_local)
G
gongweibao 已提交
939

940 941 942 943 944 945
        local_out, local_err = local_proc.communicate()

        if check_error_log:
            err_log.close()

        sys.stderr.write('local_stderr: %s\n' % local_err)
W
Wu Yi 已提交
946
        sys.stderr.write('local_stdout: %s\n' % pickle.loads(local_out))
X
Xin Pan 已提交
947

W
Wu Yi 已提交
948
        return pickle.loads(local_out)
949

950
    def _run_cluster(self, model, envs, check_error_log, log_name):
X
Xin Pan 已提交
951
        # Run dist train to compare with local results
952 953
        ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(
            model, check_error_log, envs, log_name=log_name)
W
Wu Yi 已提交
954

X
Xin Pan 已提交
955
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
956

957 958 959 960 961 962 963 964
        tr_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --update_method pserver --lr %f"

W
Wu Yi 已提交
965
        tr0_cmd = tr_cmd % \
966
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
967
                   0, ps0_ep, self._trainers, self._lr)
W
Wu Yi 已提交
968
        tr1_cmd = tr_cmd % \
969
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
970
                   1, ps1_ep, self._trainers, self._lr)
W
Wu Yi 已提交
971 972 973 974

        if self._sync_mode:
            tr0_cmd += " --sync_mode"
            tr1_cmd += " --sync_mode"
T
tangwei12 已提交
975 976 977
        if self._hogwild_mode:
            tr0_cmd += " --hogwild"
            tr1_cmd += " --hogwild"
W
Wu Yi 已提交
978 979 980
        if self._use_reduce:
            tr0_cmd += " --use_reduce"
            tr1_cmd += " --use_reduce"
981 982 983
        if self._use_reader_alloc:
            tr0_cmd += " --use_reader_alloc"
            tr1_cmd += " --use_reader_alloc"
984
        if self.__use_cuda:
985 986 987 988 989 990 991 992 993 994
            tr0_cmd += " --use_cuda"
            tr1_cmd += " --use_cuda"
            env0 = {"CUDA_VISIBLE_DEVICES": "0"}
            env1 = {"CUDA_VISIBLE_DEVICES": "1"}
        else:
            env0 = {'CPU_NUM': '1'}
            env1 = {'CPU_NUM': '1'}

        env0.update(envs)
        env1.update(envs)
X
Xin Pan 已提交
995

W
Wu Yi 已提交
996 997
        print("tr0_cmd: {}, env: {}".format(tr0_cmd, env0))
        print("tr1_cmd: {}, env: {}".format(tr1_cmd, env1))
998 999
        tr0_pipe = open(log_name + "_tr0_err.log", "wb")
        tr1_pipe = open(log_name + "_tr1_err.log", "wb")
G
gongweibao 已提交
1000

1001
        print_to_err(type(self).__name__, "going to start trainer process 0")
X
Xin Pan 已提交
1002
        tr0_proc = subprocess.Popen(
W
Wu Yi 已提交
1003
            tr0_cmd.strip().split(" "),
X
Xin Pan 已提交
1004
            stdout=subprocess.PIPE,
G
gongweibao 已提交
1005
            stderr=tr0_pipe,
X
Xin Pan 已提交
1006
            env=env0)
1007
        print_to_err(type(self).__name__, "going to start trainer process 1")
X
Xin Pan 已提交
1008
        tr1_proc = subprocess.Popen(
W
Wu Yi 已提交
1009
            tr1_cmd.strip().split(" "),
X
Xin Pan 已提交
1010
            stdout=subprocess.PIPE,
G
gongweibao 已提交
1011
            stderr=tr1_pipe,
X
Xin Pan 已提交
1012 1013
            env=env1)

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
        # Wait until trainer process terminate
        while True:
            stat0 = tr0_proc.poll()
            time.sleep(0.1)
            if stat0 is not None:
                break
        while True:
            stat1 = tr1_proc.poll()
            time.sleep(0.1)
            if stat1 is not None:
                break

1026 1027
        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
X
Xin Pan 已提交
1028

G
gongweibao 已提交
1029
        # close trainer file
1030 1031 1032 1033
        tr0_pipe.close()
        tr1_pipe.close()
        ps0_pipe.close()
        ps1_pipe.close()
W
Wu Yi 已提交
1034

W
Wu Yi 已提交
1035 1036
        ps0.terminate()
        ps1.terminate()
T
typhoonzero 已提交
1037

W
Wu Yi 已提交
1038 1039
        return pickle.loads(tr0_out), pickle.loads(tr1_out)

1040 1041 1042
    def _get_nccl2_trainer_cmd(self, model, ep, update_method, trainer_id,
                               trainer_num):
        env = {}
1043 1044 1045 1046 1047 1048 1049
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

1050
        tr_cmd = tr_cmd % \
T
tangwei12 已提交
1051 1052
                 (self._python_interp, model, self._ps_endpoints,
                  trainer_id, ep, update_method, self._lr)
W
Wu Yi 已提交
1053 1054

        if self._use_reduce:
1055
            tr_cmd += " --use_reduce"
W
Wu Yi 已提交
1056
        if self._use_reader_alloc:
1057
            tr_cmd += " --use_reader_alloc"
1058 1059
        if self._save_model:
            tr_cmd += " --save_model"
W
Wu Yi 已提交
1060
        if self.__use_cuda:
1061 1062
            tr_cmd += " --use_cuda"
            env.update({
1063
                "FLAGS_selected_gpus": "{}".format(0),
W
WangXi 已提交
1064
                "CUDA_VISIBLE_DEVICES": "{}".format(trainer_id),
1065
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
1066 1067 1068
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
1069
            })
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
        # TODO(liuyuhui):XPU_VISIBLE_DEVICES is not working right now,
        # will update it after Badiu Kunlun partners' support.
        elif self.__use_xpu:
            tr_cmd += " --use_xpu"
            env.update({
                "FLAGS_selected_xpus": "{}".format(trainer_id),
                #"XPU_VISIBLE_DEVICES": "{}".format(trainer_id + 1),
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
                "GLOG_v": "2",
            })
W
Wu Yi 已提交
1083
        else:
1084
            env.update({'CPU_NUM': '1'})
W
Wu Yi 已提交
1085

1086
        if self._use_dgc:
1087 1088
            tr_cmd += " --use_dgc"

1089 1090 1091
        if self._accumulate_gradient:
            tr_cmd += " --accumulate_gradient"

1092 1093 1094
        if self._find_unused_parameters:
            tr_cmd += " --find_unused_parameters"

1095 1096
        if self._pipeline_mode:
            tr_cmd += " --use_pipeline"
1097
        if self._mp_mode:
W
WangXi 已提交
1098
            env = {"FLAGS_selected_gpus": "{}".format(trainer_id)}
1099 1100

        if self._nccl_comm_num > 1:
1101
            tr_cmd += " --nccl_comm_num {}".format(self._nccl_comm_num)
1102

1103 1104
        if self._use_hallreduce:
            tr_cmd += " --use_hallreduce --hallreduce_inter_nranks 2"
1105

1106
        if self._enable_backward_deps:
1107
            tr_cmd += " --enable_backward_deps"
1108

1109 1110 1111
        if self._fuse_all_reduce is not None:
            tr_cmd += " --fuse_all_reduce {}".format(self._fuse_all_reduce)

1112
        if self._use_fleet_api:
1113
            tr_cmd += " --use_fleet_api_20" if self._use_fleet_api_20 else " --use_fleet_api"
1114 1115 1116 1117
            if self._use_local_sgd:
                tr_cmd += " --use_local_sgd"
            if self._ut4grad_allreduce:
                tr_cmd += " --ut4grad_allreduce"
1118 1119
            if hasattr(self, '_sync_batch_norm') and self._sync_batch_norm:
                tr_cmd += " --sync_batch_norm"
1120

1121 1122 1123
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            env['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')

1124
        return tr_cmd, env
W
Wu Yi 已提交
1125

1126 1127
    def _run_cluster_nccl2(self, model, envs, update_method, check_error_log,
                           log_name):
1128 1129
        if self._use_hallreduce:
            self._ps_endpoints = ""
1130 1131 1132

            global DIST_UT_PORT
            if DIST_UT_PORT == 0:
W
WangXi 已提交
1133
                # NOTE(wangxi). hallreduce test must use 4cards after nccl>=2.7
1134 1135 1136 1137 1138 1139 1140
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (
                        self._find_free_port())
            else:
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (DIST_UT_PORT + i)
                DIST_UT_PORT += 4
1141
            self._ps_endpoints = self._ps_endpoints[:-1]
W
Wu Yi 已提交
1142

1143 1144
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
W
Wu Yi 已提交
1145

1146
        trainer_num = len(worker_endpoints)
W
Wu Yi 已提交
1147

1148 1149 1150 1151 1152 1153 1154 1155
        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            print("use_hallreduce:{} tr_cmd:{}, env: {}".format(
                self._use_hallreduce, tr_cmd, tr_env))
W
Wu Yi 已提交
1156

1157
            tr_pipe = open(log_name + "_tr{}_err.log".format(i), "wb")
W
Wu Yi 已提交
1158

1159
            print_to_err(
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

1178 1179 1180
        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
1181

1182
        return pickle.loads(outs[0]), pickle.loads(outs[1])
1183

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
    def _run_pipeline(self, model, envs, check_error_log, log_name):
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
        update_method = "nccl2"

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            tr_env['CUDA_VISIBLE_DEVICES'] = "0,1"
            tr_env['NCCL_SHM_DISABLE'] = '1'
            tr_env['FLAGS_selected_gpus'] = str(i)
            tr_env['FLAGS_cudnn_deterministic'] = '0'
            print("tr_cmd:{}, env: {}".format(tr_cmd, tr_env))

            tr_pipe = open("/tmp/" + "tr{}_err.log".format(i), "wb")

            print_to_err(
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
        return pickle.loads(outs[0]), pickle.loads(outs[1])

1229
    def _get_required_envs(self, check_error_log=False, need_envs={}):
1230 1231 1232 1233 1234 1235
        # TODO(typhoonzero): should auto adapt GPU count on the machine.
        required_envs = {
            "PATH": os.getenv("PATH", ""),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
G
guru4elephant 已提交
1236
            "FLAGS_rpc_deadline": "30000",  # 5sec to fail fast
1237
            "FLAGS_rpc_retry_bind_port": "50",
1238
            "FLAGS_cudnn_deterministic": "1",
1239
            "FLAGS_rpc_disable_reuse_port": "1",
W
Wu Yi 已提交
1240
            "http_proxy": "",
1241 1242
            "NCCL_P2P_DISABLE": "1",
            "NCCL_SHM_DISABLE": "1"
1243 1244 1245
        }

        if check_error_log:
1246
            required_envs["GLOG_vmodule"] = \
1247 1248
                "fused_all_reduce_op_handle=10,all_reduce_op_handle=10,alloc_continuous_space_op=10,fuse_all_reduce_op_pass=10," \
                "alloc_continuous_space_for_grad_pass=10,fast_threaded_ssa_graph_executor=10,executor=10,operator=10," \
W
WangXi 已提交
1249
                "sparse_all_reduce_op_handle=10,gen_nccl_id_op=10,gen_nccl_id_op_help=10,nccl_helper=10,grpc_client=10," \
1250
                "grpc_server=10,request_handler_impl=10,section_worker=10"
1251 1252
            required_envs["GLOG_logtostderr"] = "1"

1253 1254 1255 1256 1257 1258 1259 1260 1261
        required_envs.update(need_envs)
        return required_envs

    def check_with_place(self,
                         model_file,
                         delta=1e-3,
                         check_error_log=False,
                         need_envs={},
                         log_name=""):
1262

1263 1264
        required_envs = self._get_required_envs(check_error_log, need_envs)

T
tangwei12 已提交
1265
        local_losses \
1266
            = self._run_local(model_file, required_envs,
1267 1268
                              check_error_log, log_name=log_name)

W
Wu Yi 已提交
1269
        if self._nccl2_mode:
W
Wu Yi 已提交
1270 1271
            if self._nccl2_reduce_layer:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1272 1273
                    model_file,
                    required_envs,
1274 1275
                    update_method="nccl2_reduce_layer",
                    check_error_log=check_error_log,
1276
                    log_name=log_name)
W
Wu Yi 已提交
1277 1278
            else:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1279 1280
                    model_file,
                    required_envs,
1281 1282
                    update_method='nccl2',
                    check_error_log=check_error_log,
1283
                    log_name=log_name)
1284 1285 1286 1287 1288 1289 1290 1291
        elif self._bkcl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='bkcl',
                check_error_log=check_error_log,
                log_name=log_name)

1292 1293 1294
        elif self._pipeline_mode:
            tr0_losses, tr1_losses = self._run_pipeline(
                model_file, required_envs, check_error_log, log_name=log_name)
W
Wu Yi 已提交
1295 1296
        else:
            tr0_losses, tr1_losses = self._run_cluster(
1297
                model_file, required_envs, check_error_log, log_name=log_name)
1298 1299

        for step_id in range(RUN_STEP):
W
Wu Yi 已提交
1300 1301 1302
            local_loss = local_losses[step_id]
            tr0_loss = tr0_losses[step_id]
            tr1_loss = tr1_losses[step_id]
1303 1304 1305 1306
            if self._pipeline_mode:
                dist_loss = np.array([tr1_loss])
            else:
                dist_loss = (np.array([tr0_loss]) + np.array([tr1_loss])) / 2
W
Wu Yi 已提交
1307 1308
            print("=======", local_loss, ":", dist_loss[0], "=======")
            self.assertAlmostEqual(local_loss, dist_loss[0], delta=delta)
1309 1310 1311 1312 1313 1314 1315

    def check_with_place_multi_cards(self,
                                     model_file,
                                     delta=1e-3,
                                     check_error_log=False,
                                     need_envs={},
                                     log_name=""):
1316

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
        # need open p2p or shm otherwise multi cards mode will hang
        need_envs.update({"NCCL_P2P_DISABLE": "0", "NCCL_SHM_DISABLE": "0"})

        required_envs = self._get_required_envs(check_error_log, need_envs)

        if self._use_dgc:
            multi_cards_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_dgc_2cards",
1328
                devices="0,1")
1329 1330 1331 1332 1333 1334 1335

            self._use_dgc = False
            base_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_base_2cards",
1336
                devices="0,1")
1337 1338 1339 1340 1341 1342 1343 1344

            self._use_dgc = True

            for step_id in range(RUN_STEP):
                base_loss = base_losses[step_id]
                multi_cards_loss = multi_cards_losses[step_id]
                print("=======", base_loss, ":", multi_cards_loss, "=======")
                self.assertAlmostEqual(base_loss, multi_cards_loss, delta=delta)