cuda_helper_test.cu 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
16
#include <algorithm>
17 18 19 20 21 22 23 24 25 26 27
#include <iostream>
#include <random>

#define PADDLE_CUDA_FP16
#include "paddle/fluid/platform/cuda_device_function.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/float16.h"

using paddle::platform::PADDLE_CUDA_NUM_THREADS;
using paddle::platform::float16;

D
dzhwinter 已提交
28 29 30 31 32
template <typename T>
__global__ void AddKernel(const T* data_a, T* data_b, size_t num) {
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < num;
       i += blockDim.x * gridDim.x) {
    paddle::platform::CudaAtomicAdd(&data_b[i], data_a[i]);
33
  }
D
dzhwinter 已提交
34
}
35 36 37 38 39 40 41

template <typename T>
struct AddFunctor {
  T operator()(const T& a, const T& b) { return a + b; }
};

template <typename T>
D
dzhwinter 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55
void TestCase(size_t num) {
  T *in1, *in2, *out;
  T *d_in1, *d_in2;
  size_t size = sizeof(T) * num;
  cudaMalloc(reinterpret_cast<void**>(&d_in1), size);
  cudaMalloc(reinterpret_cast<void**>(&d_in2), size);
  in1 = reinterpret_cast<T*>(malloc(size));
  in2 = reinterpret_cast<T*>(malloc(size));
  out = reinterpret_cast<T*>(malloc(size));
  std::minstd_rand engine;
  std::uniform_real_distribution<double> dist(0.0, 1.0);
  for (size_t i = 0; i < num; ++i) {
    in1[i] = static_cast<T>(dist(engine));
    in2[i] = static_cast<T>(dist(engine));
56
  }
D
dzhwinter 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
  cudaMemcpy(d_in1, in1, size, cudaMemcpyHostToDevice);
  cudaMemcpy(d_in2, in2, size, cudaMemcpyHostToDevice);
  AddKernel<T><<<1, PADDLE_CUDA_NUM_THREADS>>>(d_in1, d_in2, num);
  cudaDeviceSynchronize();
  cudaMemcpy(out, d_in2, size, cudaMemcpyDeviceToHost);
  cudaDeviceSynchronize();
  for (size_t i = 0; i < num; ++i) {
    // NOTE(dzhwinter): the float16 add has small underflow/overflow
    // so we use EXPECT_NEAR to check the result.
    EXPECT_NEAR(static_cast<float>(out[i]),
                static_cast<float>(AddFunctor<T>()(in1[i], in2[i])), 0.001);
  }
  free(in1);
  free(in2);
  free(out);
  cudaFree(d_in1);
  cudaFree(d_in2);
}
75 76 77

// cuda primitives
TEST(CudaAtomic, Add) {
D
dzhwinter 已提交
78 79
  TestCase<float>(static_cast<size_t>(10));
  TestCase<float>(static_cast<size_t>(1024 * 1024));
80

D
dzhwinter 已提交
81 82
  TestCase<double>(static_cast<size_t>(10));
  TestCase<double>(static_cast<size_t>(1024 * 1024));
83 84 85
}

TEST(CudaAtomic, float16) {
D
dzhwinter 已提交
86 87 88 89 90 91 92 93 94 95
  TestCase<float16>(static_cast<size_t>(1));
  TestCase<float16>(static_cast<size_t>(2));
  TestCase<float16>(static_cast<size_t>(3));

  TestCase<float16>(static_cast<size_t>(10));
  TestCase<float16>(static_cast<size_t>(1024 * 1024));
}

// unalignment of uint8
void TestUnalign(size_t num, const int shift_bit) {
Y
Yu Yang 已提交
96
  ASSERT_EQ(num % 2, 0);
D
dzhwinter 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
  float16 *in1, *in2, *out;
  float16 *d_in1, *d_in2;
  size_t size = sizeof(uint8_t) * (num + shift_bit);
  size_t array_size = sizeof(float16) * (num / 2);

  cudaMalloc(reinterpret_cast<void**>(&d_in1), size);
  cudaMalloc(reinterpret_cast<void**>(&d_in2), size);
  in1 = reinterpret_cast<float16*>(malloc(size));
  in2 = reinterpret_cast<float16*>(malloc(size));
  out = reinterpret_cast<float16*>(malloc(size));

  // right shift 1, mimic the unalignment of address
  float16* r_in1 =
      reinterpret_cast<float16*>(reinterpret_cast<uint8_t*>(in1) + shift_bit);
  float16* r_in2 =
      reinterpret_cast<float16*>(reinterpret_cast<uint8_t*>(in2) + shift_bit);

  std::minstd_rand engine;
  std::uniform_real_distribution<double> dist(0.0, 1.0);
  for (size_t i = 0; i < num / 2; ++i) {
    r_in1[i] = static_cast<float16>(dist(engine));
    r_in2[i] = static_cast<float16>(dist(engine));
  }
  cudaMemcpy(d_in1, r_in1, array_size, cudaMemcpyHostToDevice);
  cudaMemcpy(d_in2, r_in2, array_size, cudaMemcpyHostToDevice);
  AddKernel<float16><<<1, PADDLE_CUDA_NUM_THREADS>>>(d_in1, d_in2, num / 2);
  cudaDeviceSynchronize();
  cudaMemcpy(out, d_in2, array_size, cudaMemcpyDeviceToHost);
  cudaDeviceSynchronize();
  for (size_t i = 0; i < num / 2; ++i) {
127
    // NOTE(dzhwinter): the float16 add has small truncate error.
D
dzhwinter 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    // so we use EXPECT_NEAR to check the result.
    EXPECT_NEAR(static_cast<float>(out[i]),
                static_cast<float>(AddFunctor<float16>()(r_in1[i], r_in2[i])),
                0.001);
  }
  free(in1);
  free(in2);
  free(out);
  cudaFree(d_in1);
  cudaFree(d_in2);
}

TEST(CudaAtomic, float16Unalign) {
  // same with float16 testcase
  TestUnalign(static_cast<size_t>(2), /*shift_bit*/ 2);
  TestUnalign(static_cast<size_t>(1024), /*shift_bit*/ 2);
  TestUnalign(static_cast<size_t>(1024 * 1024), /*shift_bit*/ 2);

  // shift the address.
  TestUnalign(static_cast<size_t>(2), /*shift_bit*/ 1);
  TestUnalign(static_cast<size_t>(1024), /*shift_bit*/ 1);
  TestUnalign(static_cast<size_t>(1024 * 1024), /*shift_bit*/ 1);
150

D
dzhwinter 已提交
151 152 153
  TestUnalign(static_cast<size_t>(2), /*shift_bit*/ 3);
  TestUnalign(static_cast<size_t>(1024), /*shift_bit*/ 3);
  TestUnalign(static_cast<size_t>(1024 * 1024), /*shift_bit*/ 3);
154
}
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

// https://devblogs.nvidia.com/faster-parallel-reductions-kepler/
template <typename T>
static __forceinline__ __device__ T WarpReduceSum(T val) {
  unsigned mask = 0u;
  CREATE_SHFL_MASK(mask, true);
  for (int offset = warpSize / 2; offset > 0; offset /= 2) {
    val += paddle::platform::CudaShuffleDownSync(mask, val, offset);
  }
  return val;
}

template <typename T>
__forceinline__ __device__ T BlockReduce(T val) {
  static __shared__ T shared[32];  // Shared mem for 32 partial sums
  int lane = threadIdx.x % warpSize;
  int wid = threadIdx.x / warpSize;

  val = WarpReduceSum(val);  // Each warp performs partial reduction

  if (lane == 0) shared[wid] = val;  // Write reduced value to shared memory

  __syncthreads();  // Wait for all partial reductions

  // read from shared memory only if that warp existed
  val =
      (threadIdx.x < blockDim.x / warpSize) ? shared[lane] : static_cast<T>(0);

  if (wid == 0) val = WarpReduceSum(val);  // Final reduce within first warp

  return val;
}

template <typename T>
__global__ void DeviceReduceSum(T* in, T* out, size_t N) {
  T sum(0);
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
       i += blockDim.x * gridDim.x) {
    sum += in[i];
  }
  sum = BlockReduce<T>(sum);
  __syncthreads();
  if (threadIdx.x == 0) out[blockIdx.x] = sum;
}

template <typename T>
void TestReduce(size_t num, float atol = 0.01) {
  T* in1;
  T *d_in1, *d_in2;
  size_t size = sizeof(T) * num;
  cudaMalloc(reinterpret_cast<void**>(&d_in1), size);
  cudaMalloc(reinterpret_cast<void**>(&d_in2), sizeof(T));
  in1 = reinterpret_cast<T*>(malloc(size));
  std::minstd_rand engine;
  std::uniform_real_distribution<double> dist(0.0, 1.0);
  for (size_t i = 0; i < num; ++i) {
    in1[i] = static_cast<T>(dist(engine));
  }
  auto out = std::accumulate(in1, in1 + num, static_cast<T>(0));
  cudaMemcpy(d_in1, in1, size, cudaMemcpyHostToDevice);
  cudaDeviceSynchronize();
  DeviceReduceSum<T><<<1, PADDLE_CUDA_NUM_THREADS>>>(d_in1, d_in2, num);
  cudaMemcpy(in1, d_in2, sizeof(T), cudaMemcpyDeviceToHost);
  cudaDeviceSynchronize();
  // NOTE(dzhwinter): the float16 add has small underflow/overflow
  // so we use EXPECT_NEAR to check the result.
  EXPECT_NEAR(static_cast<float>(in1[0]), static_cast<float>(out), atol);
  free(in1);
  cudaFree(d_in1);
  cudaFree(d_in2);
}

TEST(CudaShuffleSync, float16) {
  TestReduce<float>(10);
  TestReduce<float>(1000);

  // float16 will overflow or accumulate truncate errors in big size.
  TestReduce<float16>(10);
  TestReduce<float16>(100, /*atol error*/ 1.0);
}