selected_rows.cc 5.5 KB
Newer Older
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Q
qijun 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
qijun 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

Q
qijun 已提交
9 10 11 12 13 14
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/selected_rows.h"
Q
qijun 已提交
16 17

namespace paddle {
18
namespace framework {
19

Y
Yancey1989 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
struct ReAllocateVisitor {
  ReAllocateVisitor(framework::Tensor* tensor, const framework::DDim& dims)
      : tensor_(tensor), dims_(dims) {}

  template <typename T>
  void operator()() const {
    framework::Tensor cpu_tensor;
    platform::CPUPlace cpu;
    T* ptr = cpu_tensor.mutable_data<T>(dims_, cpu);
    const T* old_ptr =
        tensor_->memory_size() == 0 ? nullptr : tensor_->data<T>();
    if (old_ptr != nullptr) {
      std::copy(old_ptr, old_ptr + tensor_->numel(), ptr);
    }
    tensor_->ShareDataWith(cpu_tensor);
  }

  framework::Tensor* tensor_;
  framework::DDim dims_;
};

struct TensorSlicedCopyVisitor {
  TensorSlicedCopyVisitor(const platform::Place& place, framework::Tensor* dst,
                          int64_t dst_offset, const framework::Tensor src,
                          int64_t src_offset, int64_t size)
      : place_(place),
        dst_(dst),
        dst_offset_(dst_offset),
        src_(src),
        src_offset_(src_offset),
        size_(size) {}

  template <typename T>
  void operator()() const {
    std::copy(src_.data<T>() + src_offset_,
              src_.data<T>() + src_offset_ + size_,
              dst_->mutable_data<T>(place_) + dst_offset_);
  }

  platform::Place place_;
  framework::Tensor* dst_;
  int64_t dst_offset_;
  framework::Tensor src_;
  int64_t src_offset_;
  int64_t size_;
};

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
void SerializeToStream(std::ostream& os, const SelectedRows& selected_rows,
                       const platform::DeviceContext& dev_ctx) {
  {  // the 1st field, uint32_t version
    constexpr uint32_t version = 0;
    os.write(reinterpret_cast<const char*>(&version), sizeof(version));
  }
  {
    // the 2st field, rows information
    auto& rows = selected_rows.rows();
    uint64_t size = rows.size();
    os.write(reinterpret_cast<const char*>(&size), sizeof(size));
    for (uint64_t i = 0; i < size; ++i) {
      os.write(reinterpret_cast<const char*>(&rows[i]), sizeof(rows[i]));
    }
  }
  {
    // the 3st field, the height of SelectedRows
    int64_t height = selected_rows.height();
    os.write(reinterpret_cast<const char*>(&height), sizeof(height));
  }
  // the 4st field, Tensor data
Y
Yi Wang 已提交
88
  TensorToStream(os, selected_rows.value(), dev_ctx);
89 90
}

Y
Yancey 已提交
91 92
void DeserializeFromStream(std::istream& is, SelectedRows* selected_rows,
                           const platform::DeviceContext& dev_ctx) {
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
  {
    // the 1st field, unit32_t version for SelectedRows
    uint32_t version;
    is.read(reinterpret_cast<char*>(&version), sizeof(version));
    PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported");
  }
  {
    // the 2st field, rows information
    uint64_t size;
    is.read(reinterpret_cast<char*>(&size), sizeof(size));
    auto& rows = *selected_rows->mutable_rows();
    rows.resize(size);
    for (uint64_t i = 0; i < size; ++i) {
      is.read(reinterpret_cast<char*>(&rows[i]), sizeof(int64_t));
    }
  }
  {
    // the 3st field, the height of the SelectedRows
    int64_t height;
    is.read(reinterpret_cast<char*>(&height), sizeof(int64_t));
    selected_rows->set_height(height);
  }
  // the 4st field, tensor which contains the data
Y
Yi Wang 已提交
116
  TensorFromStream(is, selected_rows->mutable_value(), dev_ctx);
117 118
}

Y
Yancey1989 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
bool SelectedRows::HasKey(int64_t key) const {
  return std::find(rows_.begin(), rows_.end(), key) == rows_.end() ? false
                                                                   : true;
}

Tensor SelectedRows::Get(int64_t key) const {
  int64_t index = Index(key);
  PADDLE_ENFORCE_GE(index, 0, "The key should be exists in the Table.");
  return value_->Slice(index, index + 1);
}

bool SelectedRows::Set(int64_t key, const framework::Tensor& value) {
  PADDLE_ENFORCE(value.IsInitialized(), "The value should be initialized.");
  if (value_->IsInitialized()) {
    PADDLE_ENFORCE_EQ(
        value.type(), value_->type(),
        "The type of the value should be same with the original value");
  }
  PADDLE_ENFORCE_EQ(value.dims()[0], static_cast<size_t>(1),
                    "The first dim of value should be 1.");
  auto index = Index(key);
  platform::Place cpu = platform::CPUPlace();
  bool is_new_key = false;
  if (index == -1) {
    rows_.push_back(key);
    index = rows_.size() - 1;
    is_new_key = true;
    // whether need to resize the value
    if (static_cast<int64_t>(rows_.size()) > value_->dims()[0]) {
      auto dims = value_->dims();
      dims[0] = (dims[0] + 1) << 1;
      framework::VisitDataType(framework::ToDataType(value.type()),
                               ReAllocateVisitor(value_.get(), dims));
    }
  }

  framework::VisitDataType(
      framework::ToDataType(value.type()),
      TensorSlicedCopyVisitor(cpu, value_.get(),
                              index * value_->numel() / value_->dims()[0],
                              value, static_cast<int64_t>(0), value.numel()));
  return is_new_key;
}

163
}  // namespace framework
Q
qijun 已提交
164
}  // namespace paddle