chunk_eval_op.h 8.3 KB
Newer Older
G
guosheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <set>
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

template <typename Place, typename T>
class ChunkEvalKernel : public framework::OpKernel<T> {
 public:
  struct Segment {
    int begin;
    int end;
    int type;
    bool operator==(const Segment& y) const {
      return begin == y.begin && end == y.end && type == y.type;
    }
  };

  void GetSegments(const int* label, int length, std::vector<Segment>& segments,
                   int num_chunk_types, int num_tag_types, int other_chunk_type,
                   int tag_begin, int tag_inside, int tag_end,
                   int tag_single) const {
    segments.clear();
    segments.reserve(length);
    int chunk_start = 0;
    bool in_chunk = false;
    int tag = -1;
    int type = other_chunk_type;
    for (int i = 0; i < length; ++i) {
      int prev_tag = tag;
      int prev_type = type;
      PADDLE_ENFORCE_LE(label[i], num_chunk_types * num_tag_types);
      tag = label[i] % num_tag_types;
      type = label[i] / num_tag_types;
      if (in_chunk && ChunkEnd(prev_tag, prev_type, tag, type, other_chunk_type,
                               tag_begin, tag_inside, tag_end, tag_single)) {
        Segment segment{
            chunk_start,  // begin
            i - 1,        // end
            prev_type,
        };
        segments.push_back(segment);
        in_chunk = false;
      }
      if (ChunkBegin(prev_tag, prev_type, tag, type, other_chunk_type,
                     tag_begin, tag_inside, tag_end, tag_single)) {
        chunk_start = i;
        in_chunk = true;
      }
    }
    if (in_chunk) {
      Segment segment{
          chunk_start,  // begin
          length - 1,   // end
          type,
      };
      segments.push_back(segment);
    }
  }

  bool ChunkEnd(int prev_tag, int prev_type, int tag, int type,
                int other_chunk_type, int tag_begin, int tag_inside,
                int tag_end, int tag_single) const {
    if (prev_type == other_chunk_type) return false;
    if (type == other_chunk_type) return true;
    if (type != prev_type) return true;
    if (prev_tag == tag_begin) return tag == tag_begin || tag == tag_single;
    if (prev_tag == tag_inside) return tag == tag_begin || tag == tag_single;
    if (prev_tag == tag_end) return true;
    if (prev_tag == tag_single) return true;
    return false;
  }

  bool ChunkBegin(int prev_tag, int prev_type, int tag, int type,
                  int other_chunk_type, int tag_begin, int tag_inside,
                  int tag_end, int tag_single) const {
    if (prev_type == other_chunk_type) return type != other_chunk_type;
    if (type == other_chunk_type) return false;
    if (type != prev_type) return true;
    if (tag == tag_begin) return true;
    if (tag == tag_inside) return prev_tag == tag_end || prev_tag == tag_single;
    if (tag == tag_end) return prev_tag == tag_end || prev_tag == tag_single;
    if (tag == tag_single) return true;
    return false;
  }

  void Compute(const framework::ExecutionContext& context) const override {
    // initialize to parse configurations
    int num_chunk_types, num_tag_types;
    int other_chunk_type;
    int tag_begin, tag_inside, tag_end, tag_single;
    std::vector<Segment> label_segments;
    std::vector<Segment> output_segments;
    std::set<int> excluded_chunk_types;
    int64_t num_output_segments = 0;
    int64_t num_label_segments = 0;
    int64_t num_correct = 0;
    if (context.Attr<std::string>("chunk_scheme") == "IOB") {
      num_tag_types = 2;
      tag_begin = 0;
      tag_inside = 1;
      tag_end = -1;
      tag_single = -1;
    } else if (context.Attr<std::string>("chunk_scheme") == "IOE") {
      num_tag_types = 2;
      tag_begin = -1;
      tag_inside = 0;
      tag_end = 1;
      tag_single = -1;
    } else if (context.Attr<std::string>("chunk_scheme") == "IOBES") {
      num_tag_types = 4;
      tag_begin = 0;
      tag_inside = 1;
      tag_end = 2;
      tag_single = 3;
    } else if (context.Attr<std::string>("chunk_scheme") == "plain") {
      num_tag_types = 1;
      tag_begin = -1;
      tag_inside = -1;
      tag_end = -1;
      tag_single = -1;
    } else {
      PADDLE_THROW("Unknown chunk scheme.");
    }
    other_chunk_type = num_chunk_types = context.Attr<int>("num_chunk_types");
    excluded_chunk_types.insert(
        context.Attr<std::vector<int>>("excluded_chunk_types").begin(),
        context.Attr<std::vector<int>>("excluded_chunk_types").end());

    auto* inference = context.Input<LoDTensor>("Inference");
    auto* label = context.Input<LoDTensor>("Label");
    auto* precision = context.Output<Tensor>("Precision");
    auto* recall = context.Output<Tensor>("Recall");
    auto* f1 = context.Output<Tensor>("F1-Score");

    const int* inference_data = inference->data<int>();
    const int* label_data = label->data<int>();
    T* precision_data = precision->mutable_data<T>(context.GetPlace());
    T* racall_data = recall->mutable_data<T>(context.GetPlace());
    T* f1_data = f1->mutable_data<T>(context.GetPlace());

    auto lod = label->lod();
    PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now.");
    PADDLE_ENFORCE(lod == inference->lod(),
                   "LoD must be same between Inference and Label.");
    int num_sequences = lod[0].size() - 1;
    for (int i = 0; i < num_sequences; ++i) {
      int seq_length = lod[0][i + 1] - lod[0][i];
      EvalOneSeq(inference_data + lod[0][i], label_data + lod[0][i], seq_length,
                 output_segments, label_segments, num_output_segments,
                 num_label_segments, num_correct, num_chunk_types,
                 num_tag_types, other_chunk_type, tag_begin, tag_inside,
                 tag_end, tag_single, excluded_chunk_types);
    }
    *precision_data =
        !num_output_segments ? 0 : (T)num_correct / num_output_segments;
    *racall_data =
        !num_label_segments ? 0 : (T)num_correct / num_label_segments;
    *f1_data = !num_correct ? 0 : 2 * (*precision_data) * (*racall_data) /
                                      ((*precision_data) + (*racall_data));
  }

  void EvalOneSeq(const int* output, const int* label, int length,
                  std::vector<Segment>& output_segments,
                  std::vector<Segment>& label_segments,
                  int64_t& num_output_segments, int64_t& num_label_segments,
                  int64_t& num_correct, int num_chunk_types, int num_tag_types,
                  int other_chunk_type, int tag_begin, int tag_inside,
                  int tag_end, int tag_single,
                  const std::set<int>& excluded_chunk_types) const {
    GetSegments(output, length, output_segments, num_chunk_types, num_tag_types,
                other_chunk_type, tag_begin, tag_inside, tag_end, tag_single);
    GetSegments(label, length, label_segments, num_chunk_types, num_tag_types,
                other_chunk_type, tag_begin, tag_inside, tag_end, tag_single);
    size_t i = 0, j = 0;
    while (i < output_segments.size() && j < label_segments.size()) {
      if (output_segments[i] == label_segments[j] &&
          excluded_chunk_types.count(output_segments[i].type) != 1) {
        ++num_correct;
      }
      if (output_segments[i].end < label_segments[j].end) {
        ++i;
      } else if (output_segments[i].end > label_segments[j].end) {
        ++j;
      } else {
        ++i;
        ++j;
      }
    }
    for (auto& segment : label_segments) {
      if (excluded_chunk_types.count(segment.type) != 1) ++num_label_segments;
    }
    for (auto& segment : output_segments) {
      if (excluded_chunk_types.count(segment.type) != 1) ++num_output_segments;
    }
  }
};

}  // namespace operators
}  // namespace paddle