data_norm_op.cu 8.9 KB
Newer Older
H
hutuxian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/operators/data_norm_op.h"
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/nccl_helper.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;
using platform::PADDLE_CUDA_NUM_THREADS;

#define CUDA_KERNEL_LOOP(i, n)                                 \
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
       i += blockDim.x * gridDim.x)

inline int GET_BLOCKS(const int N) {
  return (N + PADDLE_CUDA_NUM_THREADS - 1) / PADDLE_CUDA_NUM_THREADS;
}

template <typename T>
__global__ void KernelDataNormFF(int N, int C, const T *x, T *y, const T *mean,
                                 const T *scale) {
  CUDA_KERNEL_LOOP(i, N * C) {
    int col = i % C;
    y[i] = (x[i] - mean[col]) * scale[col];
  }
}

template <typename T>
__global__ void KernelMeanScale(int C, const T *batch_size, const T *batch_sum,
                                const T *batch_square_sum, T *mean, T *scale) {
  CUDA_KERNEL_LOOP(i, C) {
    mean[i] = batch_sum[i] / batch_size[i];
    scale[i] = sqrt(batch_size[i] / batch_square_sum[i]);
  }
}

template <typename T>
__global__ void KernelDataNormBP(int N, int C, const T *y_grad, const T *scale,
                                 T *x_grad) {
  CUDA_KERNEL_LOOP(i, N * C) { x_grad[i] = y_grad[i] * scale[i % C]; }
}

template <typename T>
__global__ void KernelDataNormBPStat(int N, int C, const T *x_val,
                                     const T *means,
                                     const float squared_sum_epsilon,
                                     T *batch_size, T *batch_sum,
                                     T *batch_square_sum) {
  CUDA_KERNEL_LOOP(i, C) {
    T val_sum = 0;
    T square_sum = 0;
    for (int j = 0; j < N; j++) {
      val_sum += x_val[j * C + i];
      square_sum +=
          (x_val[j * C + i] - means[i]) * (x_val[j * C + i] - means[i]);
    }
    batch_size[i] = 1;
    batch_sum[i] = val_sum / N;
    batch_square_sum[i] = square_sum / N + squared_sum_epsilon;
  }
}

template <typename T>
__global__ void KernelUpdateParam(int C, const T *d_batch_size,
                                  const T *d_batch_sum,
                                  const T *d_batch_square_sum, T *batch_size,
                                  T *batch_sum, T *batch_square_sum,
                                  const float decay_rate) {
  CUDA_KERNEL_LOOP(i, C) {
    batch_size[i] = batch_size[i] * decay_rate + d_batch_size[i];
    batch_sum[i] = batch_sum[i] * decay_rate + d_batch_sum[i];
    batch_square_sum[i] =
        batch_square_sum[i] * decay_rate + d_batch_square_sum[i];
  }
}

template <typename T>
class DataNormKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
    // Align with CPU version, but should we add this restriction?
    PADDLE_ENFORCE_EQ(x_dims.size(), 2, platform::errors::PreconditionNotMet(
                                            "The Input dim size should be 2"));
    const int N = x_dims[0];
    const int C = x_dims[1];
    const T *batch_size_in = ctx.Input<Tensor>("BatchSize")->data<T>();
    const T *batch_sum_in = ctx.Input<Tensor>("BatchSum")->data<T>();
    const T *batch_square_sum_in =
        ctx.Input<Tensor>("BatchSquareSum")->data<T>();
    auto *x_data = x->data<T>();

    // alloc memory
    T *y_data = ctx.Output<Tensor>("Y")->mutable_data<T>(ctx.GetPlace());
    T *mean_out_data =
        ctx.Output<Tensor>("Means")->mutable_data<T>(ctx.GetPlace());
    T *scale_out_data =
        ctx.Output<Tensor>("Scales")->mutable_data<T>(ctx.GetPlace());

    auto stream =
        ctx.template device_context<platform::CUDADeviceContext>().stream();

    KernelMeanScale<<<GET_BLOCKS(C), PADDLE_CUDA_NUM_THREADS, 0, stream>>>(
        C, batch_size_in, batch_sum_in, batch_square_sum_in, mean_out_data,
        scale_out_data);
    KernelDataNormFF<<<GET_BLOCKS(C * N), PADDLE_CUDA_NUM_THREADS, 0, stream>>>(
        N, C, x_data, y_data, mean_out_data, scale_out_data);
  }
};

template <typename T>
class DataNormGradKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scales = ctx.Input<Tensor>("Scales");
    const auto *means = ctx.Input<Tensor>("Means");
    const float epsilon = ctx.Attr<float>("epsilon");
    const float dr = ctx.Attr<float>("summary_decay_rate");
    const bool need_sync_stats = ctx.Attr<bool>("sync_stats");

    const auto &x_dims = x->dims();
    // Align with CPU version, but should we add this restriction?
    PADDLE_ENFORCE_EQ(x_dims.size(), 2, platform::errors::PreconditionNotMet(
                                            "The Input dim size should be 2"));
    const int N = x_dims[0];
    const int C = x_dims[1];

    // init output
    Tensor *d_x = nullptr;
    if (ctx.HasOutput(framework::GradVarName("X"))) {
      d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    }
    T *d_batch_size = ctx.Output<Tensor>(framework::GradVarName("BatchSize"))
                          ->mutable_data<T>(ctx.GetPlace());
    T *d_batch_sum = ctx.Output<Tensor>(framework::GradVarName("BatchSum"))
                         ->mutable_data<T>(ctx.GetPlace());
    T *d_batch_square_sum =
        ctx.Output<Tensor>(framework::GradVarName("BatchSquareSum"))
            ->mutable_data<T>(ctx.GetPlace());

    auto stream =
        ctx.template device_context<platform::CUDADeviceContext>().stream();
    if (d_x != nullptr) {
      KernelDataNormBP<<<GET_BLOCKS(C * N), PADDLE_CUDA_NUM_THREADS, 0,
                         stream>>>(N, C, d_y->data<T>(), scales->data<T>(),
                                   d_x->mutable_data<T>(ctx.GetPlace()));
    }

    KernelDataNormBPStat<<<GET_BLOCKS(C), PADDLE_CUDA_NUM_THREADS, 0, stream>>>(
        N, C, x->data<T>(), means->data<T>(), epsilon, d_batch_size,
        d_batch_sum, d_batch_square_sum);

    if (need_sync_stats) {
      auto comm = platform::NCCLCommContext::Instance().Get(0, ctx.GetPlace());
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclAllReduce(
          reinterpret_cast<const void *>(d_batch_size),
          reinterpret_cast<void *>(d_batch_size), C,
          platform::ToNCCLDataType(x->type()), ncclSum, comm->comm(), stream));
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclAllReduce(
          reinterpret_cast<const void *>(d_batch_sum),
          reinterpret_cast<void *>(d_batch_sum), C,
          platform::ToNCCLDataType(x->type()), ncclSum, comm->comm(), stream));
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclAllReduce(
          reinterpret_cast<const void *>(d_batch_square_sum),
          reinterpret_cast<void *>(d_batch_square_sum), C,
          platform::ToNCCLDataType(x->type()), ncclSum, comm->comm(), stream));
      cudaError_t e_sync = cudaStreamSynchronize(stream);
      if (e_sync != 0) {
        LOG(FATAL) << "Fail to sync nccl stream: "
                   << cudaGetErrorString(e_sync);
      }
    }
    T *batch_size_data =
        ctx.Output<Tensor>("BatchSize")->mutable_data<T>(ctx.GetPlace());
    T *batch_sum_data =
        ctx.Output<Tensor>("BatchSum")->mutable_data<T>(ctx.GetPlace());
    T *batch_square_sum_data =
        ctx.Output<Tensor>("BatchSquareSum")->mutable_data<T>(ctx.GetPlace());
    KernelUpdateParam<<<GET_BLOCKS(C), PADDLE_CUDA_NUM_THREADS, 0, stream>>>(
        C, d_batch_size, d_batch_sum, d_batch_square_sum, batch_size_data,
        batch_sum_data, batch_square_sum_data, dr);
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    data_norm, ops::DataNormKernel<paddle::platform::CUDADeviceContext, float>,
    ops::DataNormKernel<paddle::platform::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
    data_norm_grad,
    ops::DataNormGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::DataNormGradKernel<paddle::platform::CUDADeviceContext, double>);