backward_test.cc 10.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <sstream>

#include "glog/logging.h"
#include "gtest/gtest.h"

#include "paddle/fluid/eager/accumulation/accumulation_node.h"
#include "paddle/fluid/eager/api/generated/eager_generated/backwards/scale_node.h"
#include "paddle/fluid/eager/api/utils/tensor_utils.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/backward.h"
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/tests/test_utils.h"

#include "paddle/fluid/eager/api/all.h"

#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/core/tensor_meta.h"

using namespace egr;  // NOLINT

namespace eager_test {

TEST(Backward, SingleNodeEmptyGrad) {
  // Prepare Device Contexts
  InitEnv(paddle::platform::CPUPlace());

  // Prepare Inputs
  paddle::framework::DDim ddim = paddle::framework::make_ddim({4, 16, 16, 32});

  // Create Target Tensor
  egr::EagerTensor target_tensor = CreateTensorWithValue(
      ddim, paddle::platform::CPUPlace(), pten::DataType::FLOAT32,
      pten::DataLayout::NCHW, 1.0 /*value*/, false /*is_leaf*/);

  egr::EagerTensor leaf_tensor;
  {
    // Create Scale Node
    auto node0_ptr = std::make_shared<GradNodeScale>(1, 1);
    node0_ptr->SetAttributes_scale(5.0 /*scale*/);

    // Set grad in/out meta
    node0_ptr->SetDefaultGradInOutMeta();
    AutogradMeta* auto_grad_meta = EagerUtils::autograd_meta(&target_tensor);
    auto_grad_meta->SetGradNode(
        std::dynamic_pointer_cast<GradNodeBase>(node0_ptr));
    auto_grad_meta->SetSingleOutRankWithSlot(0, 0);

    // Connect Tensor and AccumulationNode via AutoGradMeta
    auto acc_node_ptr = std::make_shared<egr::GradNodeAccumulation>();

    AutogradMeta* auto_grad_meta1 = EagerUtils::autograd_meta(&leaf_tensor);
    auto_grad_meta1->SetGradNode(
        std::dynamic_pointer_cast<GradNodeBase>(acc_node_ptr));
    auto_grad_meta1->SetSingleOutRankWithSlot(0, 0);

    egr::RetainGradForTensor(leaf_tensor);

    // Connect Node0 -> AccumulationNode via Edge
    auto meta = egr::AutogradMeta();
    meta.SetSingleOutRankWithSlot(0, 0);
    meta.SetGradNode(acc_node_ptr);
    node0_ptr->AddEdges({&meta}, 0);
  }
  std::vector<egr::EagerTensor> outs = {target_tensor};
  // Run Backward
  RunBackward(outs, {});

  // Check Output Value
  CompareGradTensorWithValue<float>(leaf_tensor, 5.0);
}

TEST(Backward, SingleNodeCustomGrad) {
  // Prepare Device Contexts
  InitEnv(paddle::platform::CPUPlace());

  // Prepare Inputs
  std::vector<egr::EagerTensor> target_tensors;
  paddle::framework::DDim ddim = paddle::framework::make_ddim({4, 16, 16, 32});

  // Create Target Tensor
  egr::EagerTensor tensor = CreateTensorWithValue(
      ddim, paddle::platform::CPUPlace(), pten::DataType::FLOAT32,
      pten::DataLayout::NCHW, 1.0 /*value*/, false /*is_leaf*/);
  target_tensors.emplace_back(std::move(tensor));

  std::vector<egr::EagerTensor> grad_tensors;
  // Create Grad Tensor
  egr::EagerTensor grad_tensor = CreateTensorWithValue(
      ddim, paddle::platform::CPUPlace(), pten::DataType::FLOAT32,
      pten::DataLayout::NCHW, 10.0 /*value*/, false /*is_leaf*/);
  grad_tensors.emplace_back(std::move(grad_tensor));

  egr::EagerTensor leaf_tensor;
  {
    // Create Scale Node
    auto node0_ptr = std::make_shared<GradNodeScale>(1, 1);
    node0_ptr->SetAttributes_scale(5.0 /*scale*/);

    // Set grad in/out meta
    node0_ptr->SetDefaultGradInOutMeta();

    // Connect Tensor and Node via AutoGradMeta
    AutogradMeta* auto_grad_meta =
        EagerUtils::autograd_meta(&(target_tensors[0]));
    auto_grad_meta->SetGradNode(
        std::dynamic_pointer_cast<GradNodeBase>(node0_ptr));
    auto_grad_meta->SetSingleOutRankWithSlot(0, 0);

    // Connect Tensor and AccumulationNode via AutoGradMeta
    auto acc_node_ptr = std::make_shared<egr::GradNodeAccumulation>();

    AutogradMeta* auto_grad_meta1 = EagerUtils::autograd_meta(&leaf_tensor);
    auto_grad_meta1->SetGradNode(
        std::dynamic_pointer_cast<GradNodeBase>(acc_node_ptr));
    auto_grad_meta1->SetSingleOutRankWithSlot(0, 0);

    egr::RetainGradForTensor(leaf_tensor);

    // Connect Node0 -> AccumulationNode via Edge
    auto meta = egr::AutogradMeta();
    meta.SetSingleOutRankWithSlot(0, 0);
    meta.SetGradNode(acc_node_ptr);
    node0_ptr->AddEdges({&meta}, 0);
  }

  // Run Backward
  RunBackward(target_tensors, grad_tensors);

  // Check Output Value
  CompareGradTensorWithValue<float>(leaf_tensor, 50.0);
}

/*
Node1
  |
Node0
  |
 inp0
*/
TEST(Backward, LinearNodes) {
  // Prepare Device Contexts
  InitEnv(paddle::platform::CPUPlace());

  // Prepare Inputs
  std::vector<egr::EagerTensor> target_tensors;
  paddle::framework::DDim ddim = paddle::framework::make_ddim({4, 16, 16, 32});

  // Create Target Tensor
  egr::EagerTensor tensor = CreateTensorWithValue(
      ddim, paddle::platform::CPUPlace(), pten::DataType::FLOAT32,
      pten::DataLayout::NCHW, 1.0 /*value*/, false /*is_leaf*/);
  target_tensors.emplace_back(std::move(tensor));

  egr::EagerTensor leaf_tensor;
  {
    // Create Node0
    auto node0_ptr = std::make_shared<GradNodeScale>(1, 1);
    node0_ptr->SetAttributes_scale(5.0 /*scale*/);

    // Set grad in/out meta for node0
    node0_ptr->SetDefaultGradInOutMeta();

    // Create Node1
    auto node1_ptr = std::make_shared<GradNodeScale>(1, 1);
    node1_ptr->SetAttributes_scale(10.0 /*scale*/);

    // Set grad in/out meta for node1
    node1_ptr->SetDefaultGradInOutMeta();

    // Connect Input Tensor and Node0 via AutoGradMeta
    AutogradMeta* auto_grad_meta =
        EagerUtils::autograd_meta(&(target_tensors[0]));
    auto_grad_meta->SetGradNode(
        std::dynamic_pointer_cast<GradNodeBase>(node0_ptr));
    auto_grad_meta->SetSingleOutRankWithSlot(0, 0);

    // Connect Node0 -> Node1 via Edge
    auto meta0 = egr::AutogradMeta();
    meta0.SetSingleOutRankWithSlot(0, 0);
    meta0.SetGradNode(node1_ptr);
    node0_ptr->AddEdges({&meta0}, 0);

    // Connect Tensor and AccumulationNode via AutoGradMeta
    auto acc_node_ptr = std::make_shared<egr::GradNodeAccumulation>();

    AutogradMeta* auto_grad_meta1 = EagerUtils::autograd_meta(&leaf_tensor);
    auto_grad_meta1->SetGradNode(
        std::dynamic_pointer_cast<GradNodeBase>(acc_node_ptr));
    auto_grad_meta1->SetSingleOutRankWithSlot(0, 0);

    egr::RetainGradForTensor(leaf_tensor);

    // Connect Node1 -> AccumulationNode via Edge
    auto meta1 = egr::AutogradMeta();
    meta1.SetSingleOutRankWithSlot(0, 0);
    meta1.SetGradNode(acc_node_ptr);
    node1_ptr->AddEdges({&meta1}, 0);
  }

  // Use Empty Grad Tensor
  RunBackward(target_tensors, {});

  // Check Output Value
  CompareGradTensorWithValue<float>(leaf_tensor, 50.0);
}

/*
    Node2
    |   |
Node0   Node1
  |      |
 inp0   inp1
*/
TEST(Backward, WithAccumulation) {
  // Prepare Device Contexts
  InitEnv(paddle::platform::CPUPlace());

  // Prepare Inputs
  paddle::framework::DDim ddim = paddle::framework::make_ddim({4, 16, 16, 32});

  // Create Target Tensor
  std::vector<egr::EagerTensor> target_tensors;
  egr::EagerTensor tensor0 = CreateTensorWithValue(
      ddim, paddle::platform::CPUPlace(), pten::DataType::FLOAT32,
      pten::DataLayout::NCHW, 1.0 /*value*/, false /*is_leaf*/);
  egr::EagerTensor tensor1 = CreateTensorWithValue(
      ddim, paddle::platform::CPUPlace(), pten::DataType::FLOAT32,
      pten::DataLayout::NCHW, 1.0 /*value*/, false /*is_leaf*/);
  target_tensors.emplace_back(std::move(tensor0));
  target_tensors.emplace_back(std::move(tensor1));

  // Create Grad Tensor
  std::vector<egr::EagerTensor> grad_tensors;
  egr::EagerTensor grad_tensor0 = CreateTensorWithValue(
      ddim, paddle::platform::CPUPlace(), pten::DataType::FLOAT32,
      pten::DataLayout::NCHW, 5.0 /*value*/, false /*is_leaf*/);
  egr::EagerTensor grad_tensor1 = CreateTensorWithValue(
      ddim, paddle::platform::CPUPlace(), pten::DataType::FLOAT32,
      pten::DataLayout::NCHW, 10.0 /*value*/, false /*is_leaf*/);
  grad_tensors.emplace_back(std::move(grad_tensor0));
  grad_tensors.emplace_back(std::move(grad_tensor1));

  egr::EagerTensor leaf_tensor;
  {
    // Create Node0
    auto node0_ptr = std::make_shared<GradNodeScale>(1, 1);
    node0_ptr->SetAttributes_scale(5.0 /*scale*/);
    node0_ptr->SetDefaultGradInOutMeta();

    // Create Node1
    auto node1_ptr = std::make_shared<GradNodeScale>(1, 1);
    node1_ptr->SetAttributes_scale(10.0 /*scale*/);
    node1_ptr->SetDefaultGradInOutMeta();
    // Create Node2
    auto node2_ptr = std::make_shared<GradNodeScale>(1, 1);
    node2_ptr->SetAttributes_scale(20.0 /*scale*/);
    node2_ptr->SetDefaultGradInOutMeta();
    // Connect Inp0 and Node0 via AutoGradMeta
    AutogradMeta* auto_grad_meta0 =
        EagerUtils::autograd_meta(&(target_tensors[0]));
    auto_grad_meta0->SetGradNode(
        std::dynamic_pointer_cast<GradNodeBase>(node0_ptr));
    auto_grad_meta0->SetSingleOutRankWithSlot(0, 0);

    // Connect Inp1 and Node1 via AutoGradMeta
    AutogradMeta* auto_grad_meta1 =
        EagerUtils::autograd_meta(&(target_tensors[1]));
    auto_grad_meta1->SetGradNode(
        std::dynamic_pointer_cast<GradNodeBase>(node1_ptr));
    auto_grad_meta1->SetSingleOutRankWithSlot(0, 0);

    // Connect Node0 -> Node2 via Edge
    auto meta0 = egr::AutogradMeta();
    meta0.SetSingleOutRankWithSlot(0, 0);
    meta0.SetGradNode(node2_ptr);
    node0_ptr->AddEdges({&meta0}, 0);

    // Connect Node1 -> Node2 via Edge
    auto meta1 = egr::AutogradMeta();
    meta1.SetSingleOutRankWithSlot(0, 0);
    meta1.SetGradNode(node2_ptr);
    node1_ptr->AddEdges({&meta1}, 0);

    // Connect Tensor and AccumulationNode via AutoGradMeta
    auto acc_node_ptr = std::make_shared<egr::GradNodeAccumulation>();

    AutogradMeta* auto_grad_meta2 = EagerUtils::autograd_meta(&leaf_tensor);
    auto_grad_meta2->SetGradNode(
        std::dynamic_pointer_cast<GradNodeBase>(acc_node_ptr));
    auto_grad_meta2->SetSingleOutRankWithSlot(0, 0);

    egr::RetainGradForTensor(leaf_tensor);

    // Connect Node2 -> AccumulationNode via Edge
    auto meta2 = egr::AutogradMeta();
    meta2.SetSingleOutRankWithSlot(0, 0);
    meta2.SetGradNode(acc_node_ptr);
    node2_ptr->AddEdges({&meta2}, 0);
  }

  RunBackward(target_tensors, grad_tensors);

  CompareGradTensorWithValue<float>(leaf_tensor, 2500.0);
}

}  // namespace eager_test