test_imperative_double_grad.py 26.7 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
H
hong 已提交
16
import paddle
17
from paddle.fluid.wrapped_decorator import wrap_decorator
Z
Zeng Jinle 已提交
18
from paddle.vision.models import resnet50, resnet101
19 20 21
import unittest
from unittest import TestCase
import numpy as np
22
import paddle.compat as cpt
23
from paddle.fluid.framework import _test_eager_guard
24 25 26


def _dygraph_guard_(func):
27

28
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
29
        if fluid._non_static_mode():
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
            return func(*args, **kwargs)
        else:
            with fluid.dygraph.guard():
                return func(*args, **kwargs)

    return __impl__


dygraph_guard = wrap_decorator(_dygraph_guard_)


def random_var(size, low=-1, high=1, dtype='float32'):
    x_np = np.random.uniform(low=low, high=high, size=size).astype(dtype)
    return fluid.dygraph.to_variable(x_np)


46
class TestEagerGrad(TestCase):
47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
    def func_simple_example_eager_grad(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        out = paddle.matmul(x, y)
        dx = fluid.dygraph.grad(out, x)

        dout = np.ones_like(np_y)
        expected_dx = np.matmul(dout, np.transpose(np_y))

        # stop_gradient = !create_graph, create_graph default false
        self.assertEqual(dx[0].stop_gradient, True)
63
        np.testing.assert_allclose(dx[0].numpy(), expected_dx, rtol=1e-05)
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

    def test_simple_example_eager_grad(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad()
        self.func_simple_example_eager_grad()

    def func_simple_example_eager_grad_allow_unused(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        np_z = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        z = paddle.to_tensor(np_z, dtype="float64", stop_gradient=False)
        out_z = paddle.nn.functional.sigmoid(z)
        out = paddle.matmul(x, y)

        dx = fluid.dygraph.grad(out, [x, z], allow_unused=True)
        dout = np.ones_like(np_y)
        expected_dx = np.matmul(dout, np.transpose(np_y))
85
        np.testing.assert_allclose(dx[0].numpy(), expected_dx, rtol=1e-05)
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
        # stop_gradient = !create_graph, create_graph default false
        self.assertEqual(dx[0].stop_gradient, True)
        # x is unused input in the graph
        self.assertEqual(dx[1], None)

    def test_simple_example_eager_grad_allow_unused(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad_allow_unused()
        self.func_simple_example_eager_grad_allow_unused()

    def func_simple_example_eager_grad_not_allow_unused(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        np_z = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        z = paddle.to_tensor(np_z, dtype="float64", stop_gradient=False)
        out_z = paddle.nn.functional.sigmoid(z)
        out = paddle.matmul(x, y)

        try:
            # allow_unused is false in default
            dx = fluid.dygraph.grad(out, [x, z])
        except ValueError as e:
            error_msg = cpt.get_exception_message(e)
            assert error_msg.find("allow_unused") > 0

    def test_simple_example_eager_grad_not_allow_unused(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad_not_allow_unused()
        self.func_simple_example_eager_grad_not_allow_unused()

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    def func_simple_example_eager_grad_duplicate_input(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        np_z = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        z = paddle.to_tensor(np_z, dtype="float64", stop_gradient=False)
        out_z = paddle.nn.functional.sigmoid(z)
        out = paddle.matmul(x, y)

        try:
            # duplicate input will arise RuntimeError errors
            dx = fluid.dygraph.grad(out, [x, x])
        except RuntimeError as e:
            error_msg = cpt.get_exception_message(e)
            assert error_msg.find("duplicate") > 0

    def test_simple_example_eager_grad_duplicate_input(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad_duplicate_input()
        self.func_simple_example_eager_grad_duplicate_input()

    def func_simple_example_eager_grad_duplicate_output(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        np_z = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        z = paddle.to_tensor(np_z, dtype="float64", stop_gradient=False)
        out_z = paddle.nn.functional.sigmoid(z)
        out = paddle.matmul(x, y)

        try:
            # duplicate output will arise RuntimeError errors
            dx = fluid.dygraph.grad([out, out], [x])
        except RuntimeError as e:
            error_msg = cpt.get_exception_message(e)
            assert error_msg.find("duplicate") > 0

    def test_simple_example_eager_grad_duplicate_output(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad_duplicate_output()
        self.func_simple_example_eager_grad_duplicate_output()

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
    def test_simple_example_eager_two_grad_output(self):
        with _test_eager_guard():
            x1 = paddle.to_tensor([1.0, 2.0])
            x1.stop_gradient = False
            x2 = paddle.to_tensor([1.0, 2.0])
            x2.stop_gradient = False
            out1 = x1 * 2
            out2 = x2 * 2

            dout2_record_by_hook = []

            def record_hook(grad):
                dout2_record_by_hook.append(grad)

            out2.register_hook(record_hook)

            out3 = paddle.multiply(out1, out2)
            out4 = paddle.mean(out3)
            egr_dout2, egr_dout3 = paddle.grad([out4], [out2, out3])

188 189
            np.testing.assert_array_equal(dout2_record_by_hook[0].numpy(),
                                          np.array([1.0, 2.0]))
190 191 192 193 194 195 196 197 198 199 200 201 202 203

        x1 = paddle.to_tensor([1.0, 2.0])
        x1.stop_gradient = False
        x2 = paddle.to_tensor([1.0, 2.0])
        x2.stop_gradient = False
        out1 = x1 * 2
        out2 = x2 * 2

        out3 = paddle.multiply(out1, out2)
        out4 = paddle.mean(out3)
        dout2, dout3 = paddle.grad([out4], [out2, out3])

        self.assertEqual(dout2.stop_gradient, egr_dout2.stop_gradient)
        self.assertEqual(dout3.stop_gradient, egr_dout3.stop_gradient)
204 205
        np.testing.assert_array_equal(dout2.numpy(), egr_dout2.numpy())
        np.testing.assert_array_equal(dout3.numpy(), egr_dout3.numpy())
206

207

208
class TestDygraphDoubleGrad(TestCase):
209

210 211 212 213 214 215 216 217
    def setUp(self):
        self.sort_sum_gradient = False
        self.shape = [5, 10]

    def grad(self,
             outputs,
             inputs,
             grad_outputs=None,
Z
Zeng Jinle 已提交
218 219 220 221
             no_grad_vars=None,
             retain_graph=None,
             create_graph=False,
             allow_unused=False):
222
        fluid.set_flags({'FLAGS_sort_sum_gradient': self.sort_sum_gradient})
223 224 225 226 227 228 229
        return fluid.dygraph.grad(outputs=outputs,
                                  inputs=inputs,
                                  grad_outputs=grad_outputs,
                                  no_grad_vars=no_grad_vars,
                                  retain_graph=retain_graph,
                                  create_graph=create_graph,
                                  allow_unused=allow_unused)
230 231

    @dygraph_guard
232
    def func_exception(self):
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
        with self.assertRaises(AssertionError):
            self.grad(None, None)

        shape = self.shape

        with self.assertRaises(AssertionError):
            self.grad(1, random_var(shape))

        with self.assertRaises(AssertionError):
            self.grad(random_var(shape), 1)

        with self.assertRaises(AssertionError):
            self.grad([1], [random_var(shape)])

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape)], [1])

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape), random_var(shape)],
                      [random_var(shape)], [random_var(shape)])

        with self.assertRaises(AssertionError):
255 256
            self.grad([random_var(shape)], [random_var(shape)],
                      no_grad_vars=[1])
257 258

        with self.assertRaises(AssertionError):
Z
Zeng Jinle 已提交
259
            self.grad([random_var(shape)], [random_var(shape)], no_grad_vars=1)
260

261 262 263 264 265
    def test_exception(self):
        with _test_eager_guard():
            self.func_exception()
        self.func_exception()

266
    @dygraph_guard
267
    def func_simple_example(self):
268 269 270 271 272
        x = random_var(self.shape)
        x.stop_gradient = False
        y = x + 1

        for create_graph in [False, True]:
273 274 275
            dx, = self.grad([x], [x],
                            create_graph=create_graph,
                            retain_graph=True)
276 277 278 279
            self.assertEqual(dx.shape, x.shape)
            self.assertTrue(np.all(dx.numpy() == 1))
            self.assertNotEqual(dx.stop_gradient, create_graph)

280 281 282
            dx_mul_2, = self.grad([y, x], [x],
                                  create_graph=create_graph,
                                  retain_graph=True)
283 284 285 286
            self.assertEqual(dx_mul_2.shape, x.shape)
            self.assertTrue(np.all(dx_mul_2.numpy() == 2))
            self.assertNotEqual(dx_mul_2.stop_gradient, create_graph)

287 288 289
            none_grad, = self.grad([x], [y],
                                   create_graph=create_graph,
                                   allow_unused=True)
290 291
            self.assertTrue(none_grad is None)

292 293
            grad_with_none_and_not_none, = self.grad([x, y], [y],
                                                     create_graph=create_graph)
294 295 296 297 298
            self.assertTrue(grad_with_none_and_not_none.shape, x.shape)
            self.assertTrue(np.all(grad_with_none_and_not_none.numpy() == 1))
            self.assertNotEqual(grad_with_none_and_not_none.stop_gradient,
                                create_graph)

299 300 301 302 303
    def test_simple_example(self):
        with _test_eager_guard():
            self.func_simple_example()
        self.func_simple_example()

304
    @dygraph_guard
305 306 307 308 309 310 311 312 313 314 315 316 317 318
    def func_example_no_grad_vars(self):
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y1 = fluid.layers.relu(x)
        y2 = fluid.layers.relu(x)
        z = y1 + y2
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y1, z, w

319 320 321
        dx_actual, = self.grad([w_mean], [x],
                               create_graph=True,
                               no_grad_vars=[y2])
322 323 324 325 326 327 328

        self.assertFalse(y2.stop_gradient)
        self.assertFalse(dx_actual.stop_gradient)

        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + y2.numpy()) *
                       (x_np > 0) * 2).astype('float32')

329
        np.testing.assert_allclose(dx_actual.numpy(), dx_expected, rtol=1e-05)
330 331 332 333 334 335 336 337

    def test_example_no_grad_vars(self):
        with _test_eager_guard():
            self.func_example_no_grad_vars()
        self.func_example_no_grad_vars()

    @dygraph_guard
    def func_none_one_initial_gradient(self):
338 339 340 341 342 343
        numel = 1
        for s in self.shape:
            numel *= s

        half_numel = int(numel / 2)
        half_x_positive = np.random.uniform(low=1, high=2, size=[half_numel])
344 345 346 347 348
        half_x_negative = np.random.uniform(low=-2,
                                            high=-1,
                                            size=[numel - half_numel])
        x_np = np.array(list(half_x_positive) +
                        list(half_x_negative)).astype('float32')
349 350 351
        np.random.shuffle(x_np)

        x = fluid.dygraph.to_variable(x_np)
352 353
        x.stop_gradient = False

354 355
        alpha = 0.2
        y = fluid.layers.leaky_relu(x, alpha=alpha)
356 357 358 359
        y = y * y
        z = y * y

        x_np = x.numpy()
360 361
        relu_x_np = np.maximum(x_np, alpha * x_np).astype('float32')
        relu_x_grad_np = ((x_np > 0) + (x_np < 0) * alpha).astype('float32')
362 363 364 365
        dy_expected = (relu_x_np * relu_x_grad_np * 2).astype('float32')
        dz_expected = (np.power(relu_x_np, 3) * relu_x_grad_np *
                       4).astype('float32')

366 367
        random_grad_y = random_var(y.shape, low=1, high=2)
        random_grad_z = random_var(z.shape, low=1, high=2)
368 369 370 371 372 373 374 375 376
        ones_grad_y = np.ones(y.shape).astype('float32')
        ones_grad_z = np.ones(z.shape).astype('float32')

        original_random_grad_y = random_grad_y.numpy()
        original_random_grad_z = random_grad_z.numpy()

        for grad_y in [random_grad_y]:
            for grad_z in [random_grad_z]:
                for create_graph in [False, True]:
377 378 379 380 381
                    dx_actual, = self.grad(outputs=[y, z],
                                           inputs=[x],
                                           grad_outputs=[grad_y, grad_z],
                                           create_graph=create_graph,
                                           retain_graph=True)
382 383 384 385 386 387 388

                    grad_y_np = ones_grad_y if grad_y is None else grad_y.numpy(
                    )
                    grad_z_np = ones_grad_z if grad_z is None else grad_z.numpy(
                    )

                    dx_expected = dy_expected * grad_y_np + dz_expected * grad_z_np
389 390 391
                    np.testing.assert_allclose(dx_actual.numpy(),
                                               dx_expected,
                                               rtol=1e-05)
392 393 394

                    if grad_y is not None:
                        self.assertTrue(grad_y.stop_gradient)
395 396
                        np.testing.assert_array_equal(grad_y.numpy(),
                                                      original_random_grad_y)
397 398 399

                    if grad_z is not None:
                        self.assertTrue(grad_z.stop_gradient)
400 401
                        np.testing.assert_array_equal(grad_z.numpy(),
                                                      original_random_grad_z)
402

403 404 405 406 407
    def test_none_one_initial_gradient(self):
        with _test_eager_guard():
            self.func_none_one_initial_gradient()
        self.func_none_one_initial_gradient()

408
    @dygraph_guard
409
    def func_example_with_gradient_accumulation_and_create_graph(self):
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y = fluid.layers.relu(x)
        z = y + 1
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y, z, w

        dx_actual, = self.grad([w_mean], [x], create_graph=True)
        del w_mean

        self.assertFalse(dx_actual.stop_gradient)

        # Theoritical result based on math calculation
        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + 1) *
                       (x_np > 0) * 2).astype('float32')
430
        np.testing.assert_allclose(dx_actual.numpy(), dx_expected, rtol=1e-05)
431

432 433
        loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x)
        loss.backward(retain_graph=True)
434

435 436 437 438
        x_grad_actual = x.gradient()
        x_grad_expected = (2.0 / float(numel) *
                           (x_np + dx_expected *
                            (x_np > 0) * 2 / float(numel))).astype('float32')
439
        np.testing.assert_allclose(x_grad_actual, x_grad_expected, rtol=1e-05)
440 441 442

        for i in range(5):
            loss.backward(retain_graph=True)
443
            x_grad_actual = x.gradient()
444 445 446 447
            x_grad_expected = (
                i + 2) * (2.0 / float(numel) *
                          (x_np + dx_expected *
                           (x_np > 0) * 2 / float(numel))).astype('float32')
448 449 450
            np.testing.assert_allclose(x_grad_actual,
                                       x_grad_expected,
                                       rtol=1e-05)
451

452 453 454 455 456
    def test_example_with_gradient_accumulation_and_create_graph(self):
        with _test_eager_guard():
            self.func_example_with_gradient_accumulation_and_create_graph()
        self.func_example_with_gradient_accumulation_and_create_graph()

457
    @dygraph_guard
458
    def func_example_with_gradient_accumulation_and_no_grad_vars(self):
459 460 461 462 463 464 465 466 467 468 469 470 471
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y1 = fluid.layers.relu(x)
        y2 = fluid.layers.relu(x)
        z = y1 + y2
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y1, z, w

472 473 474 475
        dx_actual, = self.grad([w_mean], [x],
                               retain_graph=True,
                               create_graph=True,
                               no_grad_vars=[y2])
476 477 478 479 480 481

        self.assertFalse(y2.stop_gradient)
        self.assertFalse(dx_actual.stop_gradient)

        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + y2.numpy()) *
                       (x_np > 0) * 2).astype('float32')
482
        np.testing.assert_allclose(dx_actual.numpy(), dx_expected, rtol=1e-05)
483

484 485
        loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x)
        loss.backward()
486

487 488 489 490
        x_grad_actual = x.gradient()
        x_grad_expected = (2.0 / float(numel) *
                           (x_np + dx_expected *
                            (x_np > 0) * 4 / float(numel))).astype('float32')
491
        np.testing.assert_allclose(x_grad_actual, x_grad_expected, rtol=1e-05)
492 493 494 495 496

    def test_example_with_gradient_accumulation_and_no_grad_vars(self):
        with _test_eager_guard():
            self.func_example_with_gradient_accumulation_and_no_grad_vars()
        self.func_example_with_gradient_accumulation_and_no_grad_vars()
497 498

    @dygraph_guard
499
    def func_example_with_gradient_accumulation_and_not_create_graph(self):
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y = fluid.layers.relu(x)
        z = y + 1
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y, z, w

        dx_actual, = self.grad([w_mean], [x], create_graph=False)
        del w_mean

        self.assertTrue(dx_actual.stop_gradient)

        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + 1) *
                       (x_np > 0) * 2).astype('float32')

520
        np.testing.assert_allclose(dx_actual.numpy(), dx_expected, rtol=1e-05)
521

522 523
        loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x)
        loss.backward()
524

525 526
        x_grad_actual = x.gradient()
        x_grad_expected = (2.0 * x_np / float(numel)).astype('float32')
527
        np.testing.assert_allclose(x_grad_actual, x_grad_expected, rtol=1e-05)
528 529 530 531 532

    def test_example_with_gradient_accumulation_and_not_create_graph(self):
        with _test_eager_guard():
            self.func_example_with_gradient_accumulation_and_not_create_graph()
        self.func_example_with_gradient_accumulation_and_not_create_graph()
533 534 535


class TestDygraphDoubleGradSortGradient(TestDygraphDoubleGrad):
536

537 538 539 540 541
    def setUp(self):
        self.sort_sum_gradient = True
        self.shape = [5, 10]


H
hong 已提交
542
class TestDygraphDoubleGradVisitedUniq(TestCase):
543

544
    def func_compare(self):
545 546
        value = np.random.uniform(-0.5, 0.5, 100).reshape(10, 2,
                                                          5).astype("float32")
H
hong 已提交
547 548

        def model_f(input):
549
            linear = fluid.dygraph.Linear(5, 3, bias_attr=False)
H
hong 已提交
550 551
            for i in range(10):
                if i == 0:
552
                    out = linear(input)
H
hong 已提交
553
                else:
554
                    out = out + linear(input)
H
hong 已提交
555 556
            return out

557 558
        fluid.set_flags({'FLAGS_sort_sum_gradient': True})

H
hong 已提交
559
        with fluid.dygraph.guard():
C
cnn 已提交
560
            paddle.seed(123)
L
Leo Chen 已提交
561
            paddle.framework.random._manual_program_seed(123)
H
hong 已提交
562 563 564 565 566
            a = fluid.dygraph.to_variable(value)
            a.stop_gradient = False

            out = model_f(a)

567 568 569 570 571
            dx = fluid.dygraph.grad(outputs=[out],
                                    inputs=[a],
                                    create_graph=False,
                                    only_inputs=True,
                                    allow_unused=False)
H
hong 已提交
572 573 574 575

            grad_1 = dx[0].numpy()

        with fluid.dygraph.guard():
C
cnn 已提交
576
            paddle.seed(123)
L
Leo Chen 已提交
577
            paddle.framework.random._manual_program_seed(123)
H
hong 已提交
578 579 580 581
            a = fluid.dygraph.to_variable(value)
            a.stop_gradient = False

            out = model_f(a)
582
            out.backward()
H
hong 已提交
583 584 585

            grad_2 = a.gradient()

586
        np.testing.assert_array_equal(grad_1, grad_2)
587

588 589 590 591 592
    def test_compare(self):
        with _test_eager_guard():
            self.func_compare()
        self.func_compare()

593 594

class TestRaiseNoDoubleGradOp(TestCase):
595

596 597 598 599
    def raise_no_grad_op(self):
        with fluid.dygraph.guard():
            x = fluid.layers.ones(shape=[2, 3, 2, 2], dtype='float32')
            x.stop_gradient = False
600
            y = paddle.fluid.layers.group_norm(x, groups=1)
601

602 603 604 605
            dx = fluid.dygraph.grad(outputs=[y],
                                    inputs=[x],
                                    create_graph=True,
                                    retain_graph=True)[0]
606 607 608 609 610

            loss = fluid.layers.reduce_mean(dx)
            loss.backward()

    def test_raise(self):
611
        self.assertRaises(RuntimeError, self.raise_no_grad_op)
H
hong 已提交
612 613


W
Weilong Wu 已提交
614
class TestDoubleGradResNet(TestCase):
615

W
Weilong Wu 已提交
616 617 618 619 620
    def setUp(self):
        paddle.seed(123)
        paddle.framework.random._manual_program_seed(123)
        self.data = np.random.rand(1, 3, 224, 224).astype(np.float32)

Z
Zeng Jinle 已提交
621
    @dygraph_guard
W
Weilong Wu 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
    def test_resnet_resnet50(self):
        with _test_eager_guard():
            model = resnet50(pretrained=False)
            egr_data = paddle.to_tensor(self.data)
            egr_data.stop_gradient = False
            egr_out = model(egr_data)
            egr_preds = paddle.argmax(egr_out, axis=1)
            egr_label_onehot = paddle.nn.functional.one_hot(
                paddle.to_tensor(egr_preds), num_classes=egr_out.shape[1])
            egr_target = paddle.sum(egr_out * egr_label_onehot, axis=1)

            egr_g = paddle.grad(outputs=egr_target, inputs=egr_out)[0]
            egr_g_numpy = egr_g.numpy()
            self.assertEqual(list(egr_g_numpy.shape), list(egr_out.shape))

        model = resnet50(pretrained=False)
        data = paddle.to_tensor(self.data)
Z
Zeng Jinle 已提交
639
        data.stop_gradient = False
W
Weilong Wu 已提交
640
        out = model(data)
Z
Zeng Jinle 已提交
641
        preds = paddle.argmax(out, axis=1)
642 643
        label_onehot = paddle.nn.functional.one_hot(paddle.to_tensor(preds),
                                                    num_classes=out.shape[1])
Z
Zeng Jinle 已提交
644 645 646 647 648 649
        target = paddle.sum(out * label_onehot, axis=1)

        g = paddle.grad(outputs=target, inputs=out)[0]
        g_numpy = g.numpy()
        self.assertEqual(list(g_numpy.shape), list(out.shape))

650 651
        np.testing.assert_array_equal(egr_out, out)
        np.testing.assert_array_equal(egr_g_numpy, g_numpy)
Z
Zeng Jinle 已提交
652

W
Weilong Wu 已提交
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
    @dygraph_guard
    def test_resnet_resnet101(self):
        with _test_eager_guard():
            model = resnet101(pretrained=False)
            egr_data = paddle.to_tensor(self.data)
            egr_data.stop_gradient = False
            egr_out = model(egr_data)
            egr_preds = paddle.argmax(egr_out, axis=1)
            egr_label_onehot = paddle.nn.functional.one_hot(
                paddle.to_tensor(egr_preds), num_classes=egr_out.shape[1])
            egr_target = paddle.sum(egr_out * egr_label_onehot, axis=1)

            egr_g = paddle.grad(outputs=egr_target, inputs=egr_out)[0]
            egr_g_numpy = egr_g.numpy()
            self.assertEqual(list(egr_g_numpy.shape), list(egr_out.shape))

        model = resnet101(pretrained=False)
        data = paddle.to_tensor(self.data)
        data.stop_gradient = False
        out = model(data)
        preds = paddle.argmax(out, axis=1)
674 675
        label_onehot = paddle.nn.functional.one_hot(paddle.to_tensor(preds),
                                                    num_classes=out.shape[1])
W
Weilong Wu 已提交
676
        target = paddle.sum(out * label_onehot, axis=1)
Z
Zeng Jinle 已提交
677

W
Weilong Wu 已提交
678 679 680
        g = paddle.grad(outputs=target, inputs=out)[0]
        g_numpy = g.numpy()
        self.assertEqual(list(g_numpy.shape), list(out.shape))
Z
Zeng Jinle 已提交
681

682 683
        np.testing.assert_array_equal(egr_out, out)
        np.testing.assert_array_equal(egr_g_numpy, g_numpy)
Z
Zeng Jinle 已提交
684 685


686
class TestDoubleGradBasics(TestCase):
687

688 689 690
    def test_matmul(self):
        input_numpy = np.ones([3, 3]) * 2
        with _test_eager_guard():
691 692 693 694 695 696 697 698 699
            x = paddle.to_tensor(input_numpy,
                                 stop_gradient=False,
                                 dtype='float32')
            y = paddle.to_tensor(input_numpy,
                                 stop_gradient=False,
                                 dtype='float32')
            grad_out = paddle.to_tensor(np.ones([3, 3]),
                                        stop_gradient=False,
                                        dtype='float32')
700 701

            out = paddle.matmul(x, y, False, False)
702 703 704
            new_x_g, new_y_g = paddle.grad([out], [x, y], [grad_out],
                                           retain_graph=True,
                                           create_graph=True)
705 706 707
            new_x_g.backward()

            out_ref = np.ones([3, 3]) * 12.0
708
            np.testing.assert_array_equal(out.numpy(), out_ref)
709 710 711

            new_x_g_ref = np.ones([3, 3]) * 6.0
            new_y_g_ref = np.ones([3, 3]) * 6.0
712 713
            np.testing.assert_array_equal(new_x_g.numpy(), new_x_g_ref)
            np.testing.assert_array_equal(new_y_g.numpy(), new_y_g_ref)
714 715

            x_grad_ref = np.ones([3, 3]) * 0.0
716
            np.testing.assert_array_equal(x.grad.numpy(), x_grad_ref)
717 718

            y_grad_ref = np.ones([3, 3]) * 3.0
719
            np.testing.assert_array_equal(y.grad.numpy(), y_grad_ref)
720 721

            grad_out_grad_ref = np.ones([3, 3]) * 6.0
722 723
            np.testing.assert_array_equal(grad_out.grad.numpy(),
                                          grad_out_grad_ref)
724 725


726 727
if __name__ == '__main__':
    unittest.main()