test_hsigmoid_op.py 26.5 KB
Newer Older
W
weixing02 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
W
weixing02 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yancey1989 已提交
17 18
import unittest
import numpy as np
L
Leo Chen 已提交
19
import paddle
J
JiabinYang 已提交
20 21
import paddle.fluid.core as core
import paddle.fluid as fluid
22
import paddle.nn.functional as F
23
from paddle.fluid import Program, program_guard
24
import paddle.fluid.initializer as I
Y
Yancey1989 已提交
25
import math
26
from op_test import OpTest, skip_check_grad_ci
Y
Yancey1989 已提交
27

28
paddle.enable_static()
D
dzhwinter 已提交
29 30
np.random.seed(100)

Y
Yancey1989 已提交
31 32 33 34 35 36

def find_latest_set(num):
    return 1 + int(math.floor(math.log(num, 2)))


class CodeTable(object):
37

Y
Yancey1989 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50
    def __init__(self, num_classes, code):
        self.c = num_classes + code

    def cal_index(self, bit):
        return (self.c >> (bit + 1)) - 1

    def get_length(self):
        return find_latest_set(self.c) - 1

    def cal_bit(self, bit):
        return self.c & (1 << bit)


51
class CodeTableWithCustomTree(object):
52

53 54 55
    def __init__(self, path_table, path_code, index):
        self.ptable_ = path_table
        self.pcode_ = path_code
56 57 58 59 60 61 62
        self.index_ = index

    def cal_index(self, bit):
        return self.ptable_[self.index_][bit]

    def get_length(self):
        length = 0
J
JiabinYang 已提交
63
        for ele in self.ptable_[self.index_]:  # find the first -1 to stop trace
64 65 66 67 68 69 70 71 72 73
            if ele >= 0:
                length = length + 1
            else:
                return length
        return length

    def cal_bit(self, bit):
        return self.pcode_[self.index_][bit]


W
weixing02 已提交
74
def hsigmoid(x, w, label, bias, num_classes):
Y
Yancey1989 已提交
75 76 77
    batch_size = x.shape[0]
    code_length = find_latest_set(num_classes - 1)
    code_table = [0 for _ in range(code_length)]
78 79 80
    pre_output = np.zeros((batch_size, code_length)).astype('float64')
    pre_sum = np.zeros((batch_size, 1)).astype('float64')
    out = np.zeros((batch_size, 1)).astype('float64')
W
weixing02 已提交
81
    for i in range(batch_size):
W
weixing02 已提交
82
        code_table = CodeTable(num_classes, label[i])
Y
Yancey1989 已提交
83
        length = code_table.get_length()
W
weixing02 已提交
84
        for j in range(length):
Y
Yancey1989 已提交
85
            idx = code_table.cal_index(j)
J
JiabinYang 已提交
86
            pre_output[i][j] += bias[idx][0]
87 88
    for i in range(batch_size):
        code_table = CodeTable(num_classes, label[i])
W
weixing02 已提交
89
        length = code_table.get_length()
90 91 92
        for j in range(length):
            idx = code_table.cal_index(j)
            pre_output[i][j] += np.dot(w[idx], x[i])
Y
Yancey1989 已提交
93
    # clip[-40.0, 40.0]
W
weixing02 已提交
94
    pre_output = np.clip(pre_output, -40.0, 40.0)
Y
Yancey1989 已提交
95
    # out(i, 0) = \sum_j  bit(i, j) * preout(i, j)
W
weixing02 已提交
96
    for i in range(batch_size):
W
weixing02 已提交
97
        code_table = CodeTable(num_classes, label[i])
Y
Yancey1989 已提交
98 99
        length = code_table.get_length()
        sum = 0.0
W
weixing02 已提交
100
        for j in range(length):
Y
Yancey1989 已提交
101 102 103 104 105 106 107
            if code_table.cal_bit(j):
                sum += pre_output[i][j]
        out[i] = -1.0 * sum
    # soft relu
    pre_output = np.log(1 + np.exp(pre_output))
    pre_sum = pre_output.sum(1).reshape((batch_size, 1))
    out += pre_sum
108
    return pre_output, out
Y
Yancey1989 已提交
109 110


111 112
def hsigmoid_grad(x, w, label, bias, num_classes):
    batch_size = x.shape[0]
113 114 115
    dx = np.zeros(x.shape).astype('float64')
    dw = np.zeros(w.shape).astype('float64')
    db = np.zeros(bias.shape).astype('float64')
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    for i in range(batch_size):
        code_table = CodeTable(num_classes, label[i])
        length = code_table.get_length()
        for j in range(length):
            idx = code_table.cal_index(j)
            t = 1 / (1 + np.exp(-(np.dot(w[idx], x[i]) + bias[idx])))
            dx[i] = dx[i] + t * w[idx]
            dw[idx] += t * x[i]
            db[idx] += t
            if code_table.cal_bit(j):
                dx[i] = dx[i] - w[idx]
                dw[idx] -= x[i]
                db[idx] -= 1
    dx /= batch_size
    dw /= batch_size
    db /= batch_size
    return [dx, dw, db]


135 136
def hsigmoidWithCustomTree(x, w, path_table, path_code, label, bias,
                           num_classes):
137
    batch_size = x.shape[0]
138
    code_length = len(path_table[0])
139
    code_table = [0 for _ in range(code_length)]
J
JiabinYang 已提交
140
    # init pre_out with shape [N, code_length]
141 142 143
    pre_output = np.zeros((batch_size, code_length)).astype('float64')
    pre_sum = np.zeros((batch_size, 1)).astype('float64')
    out = np.zeros((batch_size, 1)).astype('float64')
144 145
    if isinstance(bias, np.ndarray):
        for i in range(batch_size):
146
            code_table = CodeTableWithCustomTree(path_table, path_code, i)
147 148 149 150
            length = code_table.get_length()
            for j in range(length):
                idx = code_table.cal_index(j)
                pre_output[i][j] += bias[idx][0]
151
    for i in range(batch_size):
152
        code_table = CodeTableWithCustomTree(path_table, path_code, i)
153 154 155 156 157 158 159 160
        length = code_table.get_length()
        for j in range(length):
            idx = code_table.cal_index(j)
            pre_output[i][j] += np.dot(w[idx], x[i])
    # clip[-40.0, 40.0]
    pre_output = np.clip(pre_output, -40.0, 40.0)
    # out(i, 0) = \sum_j  bit(i, j) * preout(i, j)
    for i in range(batch_size):
161
        code_table = CodeTableWithCustomTree(path_table, path_code, i)
162 163 164 165 166 167 168 169 170 171 172 173 174
        length = code_table.get_length()
        sum = 0.0
        for j in range(length):
            if code_table.cal_bit(j):
                sum += pre_output[i][j]
        out[i] = -1.0 * sum
    # soft relu
    pre_output = np.log(1 + np.exp(pre_output))
    pre_sum = pre_output.sum(1).reshape((batch_size, 1))
    out += pre_sum
    return pre_output, out


175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
def python_api(input,
               weight,
               label,
               path_table=None,
               path_code=None,
               bias=None,
               num_classes=-1,
               is_sparse=False,
               remote_prefetch=False):
    assert is_sparse == remote_prefetch, "is_sparse is equal to remote_prefetch in dygraph."
    return paddle.nn.functional.hsigmoid_loss(input, label, num_classes, weight,
                                              bias, path_table, path_code,
                                              is_sparse)


python_out_sig = ["Out"]


J
JiabinYang 已提交
193
class TestHSigmoidOp(OpTest):
194

J
JiabinYang 已提交
195 196
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
197 198
        self.python_api = python_api
        self.python_out_sig = python_out_sig
199 200 201
        num_classes = 101
        feature_size = 5
        batch_size = 20
202 203 204 205 206 207 208
        x = np.random.uniform(-1, 1,
                              (batch_size, feature_size)).astype('float64')
        w = np.random.uniform(-1, 1,
                              (num_classes - 1, feature_size)).astype('float64')
        label = np.random.randint(0, num_classes,
                                  (batch_size, 1)).astype('int64')
        bias = np.random.uniform(-1, 1, (num_classes - 1, 1)).astype('float64')
J
JiabinYang 已提交
209 210 211 212
        self.attrs = {'num_classes': num_classes, 'is_sparse': False}
        self.inputs = {'X': x, 'W': w, 'Label': label, 'Bias': bias}
        pre_output, out = hsigmoid(x, w, label, bias, num_classes)
        self.outputs = {'PreOut': pre_output, 'Out': out}
213
        self.user_grads = hsigmoid_grad(x, w, label, bias, num_classes)
J
JiabinYang 已提交
214 215

    def test_check_output(self):
216
        self.check_output(check_eager=True)
J
JiabinYang 已提交
217 218

    def test_check_grad(self):
219
        self.check_grad(['X', 'W', 'Bias'], ['Out'],
220 221
                        user_defined_grads=self.user_grads,
                        check_eager=True)
J
JiabinYang 已提交
222 223


224
@skip_check_grad_ci(
225 226
    reason=
    "For 'TestHSigmoidOpSparse', check_grad is separately calculated by 'TestHSigmoidOpWithSparseGrad'."
227
)
J
JiabinYang 已提交
228
class TestHSigmoidOpSparse(OpTest):
229

J
JiabinYang 已提交
230 231
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
232 233
        self.python_api = python_api
        self.python_out_sig = python_out_sig
J
JiabinYang 已提交
234 235 236
        num_classes = 6  #using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
        feature_size = 8
        batch_size = 4
237 238
        x = np.random.random((batch_size, feature_size))
        w = np.random.random((num_classes - 1, feature_size))
239 240
        label = np.array([0, 1, 4, 5]).astype('int64')
        path_table = np.array([
241 242
            (0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (0, 1, 4, -1, -1),
            (0, 2, -1, -1, -1)
243 244
        ]).astype(
            'int64')  #np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
245 246 247
        path_code = np.array([(0, 0, -1, -1, -1), (1, 1, 1, -1, -1),
                              (1, 0, 0, -1, -1), (0, 1, -1, -1, -1)
                              ]).astype('int64')  #np.array to store
248
        bias = np.random.random((num_classes - 1, 1))
J
JiabinYang 已提交
249 250 251 252
        self.attrs = {'num_classes': num_classes, 'is_sparse': True}
        self.inputs = {
            'X': x,
            'W': w,
253
            'PathTable': path_table,
254
            'PathCode': path_code,
J
JiabinYang 已提交
255 256 257
            'Label': label,
            'Bias': bias
        }
258 259
        pre_output, out = hsigmoidWithCustomTree(x, w, path_table, path_code,
                                                 label, bias, num_classes)
J
JiabinYang 已提交
260 261 262
        self.outputs = {'PreOut': pre_output, 'Out': out}

    def test_check_output(self):
263
        self.check_output(check_eager=True)
J
JiabinYang 已提交
264 265 266


class TestHSigmoidOpWithSparseGrad(unittest.TestCase):
267

J
JiabinYang 已提交
268 269
    def hs_net_conf(self, is_sparse):
        input_word = fluid.layers.data(name="x", shape=[1], dtype='int64')
270 271 272 273 274 275
        path_table = fluid.layers.data(name='path_table',
                                       shape=[3],
                                       dtype='int64')
        path_code = fluid.layers.data(name='path_code',
                                      shape=[3],
                                      dtype='int64')
J
JiabinYang 已提交
276
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')
J
JiabinYang 已提交
277

278
        data_list = [input_word, path_table, path_code, label]
J
JiabinYang 已提交
279 280 281

        emb = fluid.layers.embedding(
            input=input_word,
J
JiabinYang 已提交
282
            is_sparse=is_sparse,
J
JiabinYang 已提交
283 284 285 286
            size=[3, 3],
            param_attr=fluid.ParamAttr(initializer=fluid.initializer.Normal(
                scale=1 / math.sqrt(3))))

287 288 289 290 291 292 293 294
        cost = fluid.layers.hsigmoid(input=emb,
                                     label=label,
                                     bias_attr=True,
                                     num_classes=3,
                                     path_table=path_table,
                                     path_code=path_code,
                                     is_custom=True,
                                     is_sparse=is_sparse)
J
JiabinYang 已提交
295 296 297 298 299

        avg_cost = fluid.layers.reduce_mean(cost)

        return avg_cost, data_list

J
JiabinYang 已提交
300 301
    def training_test(self, is_sparse):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
C
cnn 已提交
302
            paddle.seed(1)
J
JiabinYang 已提交
303 304
            start_up = fluid.default_startup_program()
            x = np.arange(6).reshape(6)
305 306 307
            path_table = np.array([(1, 2, -1), (1, 2, -1)]).astype('int64')
            path_code = np.array([(1, 0, -1), (0, 0, -1)]).astype('int64')
            label = np.array([1, 4]).astype('int64')
J
JiabinYang 已提交
308 309 310 311 312 313 314 315 316 317 318 319

            loss, data_list = self.hs_net_conf(is_sparse)
            optimizer = fluid.optimizer.SGD(learning_rate=1e-3)
            optimizer.minimize(loss)

            main_program = fluid.default_main_program()
            place = fluid.CPUPlace()
            feeder = fluid.DataFeeder(feed_list=data_list, place=place)
            exe = fluid.Executor(place)

            exe.run(start_up)
            result = list()
J
JiabinYang 已提交
320
            for i in range(10):
321 322
                data = [([[x[i % 2]]], [list(path_table[i % 2])],
                         [list(path_code[i % 2])], [label[i % 2]])]
J
JiabinYang 已提交
323

J
JiabinYang 已提交
324 325 326
                loss_val = exe.run(main_program,
                                   feed=feeder.feed(data),
                                   fetch_list=[loss])
J
JiabinYang 已提交
327 328 329 330 331 332 333 334 335
                result.append(loss_val)
        return result

    def test_hs_grad_with_sparse(self):
        dense_result = self.training_test(is_sparse=False)
        sparse_result = self.training_test(is_sparse=True)
        assert (dense_result == sparse_result)


336
@skip_check_grad_ci(
337 338
    reason=
    "[skip shape check] The huffman tree is structed separately. It will be complicated if use large shape."
339
)
J
JiabinYang 已提交
340
class TestHSigmoidOpWithCostumTree(OpTest):
341

J
JiabinYang 已提交
342 343
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
344 345
        self.python_api = python_api
        self.python_out_sig = python_out_sig
J
JiabinYang 已提交
346 347 348
        num_classes = 6  #using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
        feature_size = 8
        batch_size = 4
349 350
        x = np.random.uniform(-1, 1, (batch_size, feature_size))
        w = np.random.uniform(-1, 1, (num_classes - 1, feature_size))
351 352
        label = np.array([0, 1, 4, 5]).astype('int64')
        path_table = np.array([
353 354
            (0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (0, 1, 4, -1, -1),
            (0, 2, -1, -1, -1)
355 356
        ]).astype(
            'int64')  #np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
357 358 359
        path_code = np.array([(0, 0, -1, -1, -1), (1, 1, 1, -1, -1),
                              (1, 0, 0, -1, -1), (0, 1, -1, -1, -1)
                              ]).astype('int64')  #np.array to store
360
        bias = np.random.random((num_classes - 1, 1))
J
JiabinYang 已提交
361 362 363 364
        self.attrs = {'num_classes': num_classes, 'is_sparse': False}
        self.inputs = {
            'X': x,
            'W': w,
365
            'PathTable': path_table,
366
            'PathCode': path_code,
J
JiabinYang 已提交
367 368 369
            'Label': label,
            'Bias': bias
        }
370 371
        pre_output, out = hsigmoidWithCustomTree(x, w, path_table, path_code,
                                                 label, bias, num_classes)
J
JiabinYang 已提交
372 373 374
        self.outputs = {'PreOut': pre_output, 'Out': out}

    def test_check_output(self):
375
        self.check_output(check_eager=True)
J
JiabinYang 已提交
376 377

    def test_check_grad(self):
378 379 380
        self.check_grad(['Bias', 'X', 'W'], ['Out'],
                        no_grad_set=set('Label'),
                        check_eager=True)
J
JiabinYang 已提交
381

Y
Yancey1989 已提交
382

383
@skip_check_grad_ci(
384 385
    reason=
    "[skip shape check] The huffman tree is structed separately. It will be complicated if use large shape."
386
)
387
class TestHSigmoidOpWithCostumTreeWithoutBias(OpTest):
388

389 390
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
391 392
        self.python_api = python_api
        self.python_out_sig = python_out_sig
393 394 395
        num_classes = 6  #using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
        feature_size = 8
        batch_size = 4
396 397
        x = np.random.uniform(-1, 1, (batch_size, feature_size))
        w = np.random.uniform(-1, 1, (num_classes - 1, feature_size))
398 399
        label = np.array([0, 1, 4, 5]).astype('int64')
        path_table = np.array([
400 401
            (0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (0, 1, 4, -1, -1),
            (0, 2, -1, -1, -1)
402 403
        ]).astype(
            'int64')  #np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
404 405 406
        path_code = np.array([(0, 0, -1, -1, -1), (1, 1, 1, -1, -1),
                              (1, 0, 0, -1, -1), (0, 1, -1, -1, -1)
                              ]).astype('int64')  #np.array to store
407 408 409 410 411
        # bias = np.random.random((num_classes - 1, 1)).astype("float32")
        self.attrs = {'num_classes': num_classes, 'is_sparse': False}
        self.inputs = {
            'X': x,
            'W': w,
412
            'PathTable': path_table,
413
            'PathCode': path_code,
414 415
            'Label': label,
        }
416 417 418 419 420 421 422
        pre_output, out = hsigmoidWithCustomTree(x=x,
                                                 w=w,
                                                 path_table=path_table,
                                                 path_code=path_code,
                                                 label=label,
                                                 bias=None,
                                                 num_classes=num_classes)
423 424 425
        self.outputs = {'PreOut': pre_output, 'Out': out}

    def test_check_output(self):
426
        self.check_output(check_eager=True)
427 428

    def test_check_grad(self):
429 430 431
        self.check_grad(['X', 'W'], ['Out'],
                        no_grad_set=set('Label'),
                        check_eager=True)
432 433


434 435 436 437 438 439 440 441 442 443 444 445 446 447
class TestHSigmoidLossAPI(unittest.TestCase):
    # test paddle.nn.functional.hsigmoid_loss, paddle.nn.HSigmoidLoss
    def setUp(self):
        self.dtype = 'float32'
        self.batch_size = 4
        self.feature_size = 6
        self.num_classes = 8
        self.is_custom = False
        self.place = paddle.CPUPlace()

        paddle.set_default_dtype(self.dtype)

        self.x_np = np.random.uniform(
            -1, 1, [self.batch_size, self.feature_size]).astype(self.dtype)
448 449 450
        self.labels_np = np.random.randint(self.num_classes,
                                           size=(self.batch_size, 1),
                                           dtype='int64')
451 452
        self.weight_np = np.random.uniform(
            -1, 1, [self.num_classes - 1, self.feature_size]).astype(self.dtype)
453 454
        self.bias_np = np.random.uniform(
            -1, 1, (self.num_classes - 1, )).astype(self.dtype)
455 456 457 458 459 460 461
        self.path_table_np = None
        self.path_code_np = None
        _, self.out_np = hsigmoid(self.x_np, self.weight_np, self.labels_np,
                                  self.bias_np, self.num_classes)
        self.set_attrs()

        if self.is_custom:
462 463 464 465 466 467
            _, self.out_np = hsigmoidWithCustomTree(self.x_np, self.weight_np,
                                                    self.path_table_np,
                                                    self.path_code_np,
                                                    self.labels_np,
                                                    self.bias_np.reshape(-1, 1),
                                                    self.num_classes)
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502

    def set_attrs(self):
        pass

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        labels = paddle.to_tensor(self.labels_np)
        weight = paddle.to_tensor(self.weight_np)
        bias = paddle.to_tensor(self.bias_np)
        path_table = None
        path_code = None
        if self.is_custom:
            path_table = paddle.to_tensor(self.path_table_np)
            path_code = paddle.to_tensor(self.path_code_np)
        out1 = F.hsigmoid_loss(x, labels, self.num_classes, weight, bias,
                               path_table, path_code)

        weight_attr = I.NumpyArrayInitializer(self.weight_np)
        bias_attr = I.NumpyArrayInitializer(self.bias_np)
        m = paddle.nn.HSigmoidLoss(self.feature_size, self.num_classes,
                                   weight_attr, bias_attr, self.is_custom)
        out2 = m(x, labels, path_table, path_code)

        for out in [out1, out2]:
            self.assertTrue(np.allclose(self.out_np, out.numpy()))
        paddle.enable_static()

    def test_static_api(self):
        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        with paddle.static.program_guard(train_program, startup_program):
            x = paddle.static.data('x', [-1, self.feature_size])
            labels = paddle.static.data('labels', [-1, 1], 'int64')
            weight = paddle.static.data('weight', [-1, self.feature_size])
503 504 505
            bias = paddle.static.data('bias', [
                -1,
            ])
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
            path_table = None
            path_code = None
            if self.is_custom:
                path_table = paddle.static.data('path_table', [-1, -1], 'int64')
                path_code = paddle.static.data('path_code', [-1, -1], 'int64')
            out1 = F.hsigmoid_loss(x, labels, self.num_classes, weight, bias,
                                   path_table, path_code)

            weight_attr = paddle.framework.ParamAttr(
                initializer=I.NumpyArrayInitializer(self.weight_np))
            bias_attr = paddle.framework.ParamAttr(
                initializer=I.NumpyArrayInitializer(self.bias_np))
            m = paddle.nn.HSigmoidLoss(self.feature_size, self.num_classes,
                                       weight_attr, bias_attr, self.is_custom)
            out2 = m(x, labels, path_table, path_code)

            exe = paddle.static.Executor(self.place)
            exe.run(startup_program)
            feed_dict = {
                'x': self.x_np,
                'labels': self.labels_np,
                'weight': self.weight_np,
                'bias': self.bias_np
            }
            if self.is_custom:
                feed_dict["path_code"] = self.path_code_np
                feed_dict["path_table"] = self.path_table_np
            ret1, ret2 = exe.run(train_program,
                                 feed=feed_dict,
                                 fetch_list=[out1, out2])

            for ret in [ret1, ret2]:
                self.assertTrue(np.allclose(self.out_np, ret))

    def test_fluid_api(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            x = fluid.data('x', [-1, self.feature_size])
            labels = fluid.data('labels', [-1, 1], 'int64')
            path_table = None
            path_code = None
            if self.is_custom:
                path_table = fluid.data('path_table', [-1, -1], 'int64')
                path_code = fluid.data('path_code', [-1, -1], 'int64')
            weight_attr = I.NumpyArrayInitializer(self.weight_np)
            bias_attr = I.NumpyArrayInitializer(self.bias_np)
            out = fluid.layers.hsigmoid(x, labels, self.num_classes,
                                        weight_attr, bias_attr, 'out',
                                        path_table, path_code, self.is_custom)

            exe = fluid.Executor(self.place)
            exe.run(startup_program)
            feed_dict = {'x': self.x_np, 'labels': self.labels_np}
            if self.is_custom:
                feed_dict["path_code"] = self.path_code_np
                feed_dict["path_table"] = self.path_table_np
            ret, = exe.run(train_program, feed=feed_dict, fetch_list=[out])

            self.assertTrue(np.allclose(ret, self.out_np))

567
    def test_errors(self):
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            # test paddle.nn.HSigmoidLoss
            self.assertRaises(ValueError, paddle.nn.HSigmoidLoss, 6, 1)

            # test paddle.nn.functional.hsigmoid_loss
            x = paddle.static.data('x', [4, 6])
            label = paddle.static.data('label', [4, 1], 'int64')
            weight = paddle.static.data('weight', [7, 6])
            bias = paddle.static.data('bias', [7])

            x_int32 = paddle.static.data('x_int32', [4, 6], 'int32')
            self.assertRaises(TypeError, F.hsigmoid_loss, x_int32, label, 8,
                              weight)

            label_float32 = paddle.static.data('label_float32', [4, 1],
                                               'float32')
            self.assertRaises(TypeError, F.hsigmoid_loss, x, label_float32, 8,
                              weight)

            weight_int32 = paddle.static.data('weight_int32', [7, 6], 'int32')
            self.assertRaises(TypeError, F.hsigmoid_loss, x, label, 8,
                              weight_int32)

            bias_int32 = paddle.static.data('bias_int32', [7], 'int32')
593 594 595 596 597 598 599
            self.assertRaises(TypeError,
                              F.hsigmoid_loss,
                              x,
                              label,
                              8,
                              weight,
                              bias=bias_int32)
600 601 602

            path_table_int32 = paddle.static.data('path_table_int32', [7],
                                                  'int32')
603 604 605 606 607 608 609
            self.assertRaises(TypeError,
                              F.hsigmoid_loss,
                              x,
                              label,
                              8,
                              weight,
                              path_table=path_table_int32)
610 611 612

            path_code_int32 = paddle.static.data('path_code_int32', [7],
                                                 'int32')
613 614 615 616 617 618 619
            self.assertRaises(TypeError,
                              F.hsigmoid_loss,
                              x,
                              label,
                              8,
                              weight,
                              path_code=path_code_int32)
620

L
Linjie Chen 已提交
621 622 623 624 625 626 627 628 629 630 631 632 633 634
        # test paddle.nn.HSigmoidLoss
        paddle.disable_static(self.place)
        x_arr = np.array([], dtype=np.float32)
        x = paddle.to_tensor(np.reshape(x_arr, (100000, 0)))
        label = paddle.to_tensor(0, dtype='int64')
        self.assertRaises(ValueError, paddle.nn.HSigmoidLoss, x, label)

        # test paddle.nn.functional.hsigmoid_loss
        x = paddle.to_tensor(np.reshape(x_arr, (10, 0)), dtype='float32')
        label = paddle.to_tensor([], dtype='int64')
        weight = paddle.to_tensor([], dtype='float32')
        self.assertRaises(ValueError, F.hsigmoid_loss, x, label, 0, weight)
        paddle.enable_static()

635
        # test paddle.fluid.layers.hsigmoid
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
        with program_guard(Program()):
            label = fluid.data('label', [4, 1], 'int64')
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.hsigmoid, 1, label, 2)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[4, 3], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.hsigmoid, x_int32, label,
                              2)
            # support the input dtype is float32
            x_fp32 = fluid.data(name='x_fp32', shape=[4, 3], dtype='float32')
            fluid.layers.hsigmoid(x_fp32, label, 2)

            # The label type must be Variable.
            self.assertRaises(TypeError, fluid.layers.hsigmoid, x_fp32, 1, 2)
            # The label dtype must be int64.
            label_int32 = fluid.data('label_int32', [4, 1], 'int32')
            self.assertRaises(TypeError, fluid.layers.hsigmoid, x_fp32,
                              label_int32, 2)


656
class TestHSigmoidLossAPICustom(TestHSigmoidLossAPI):
657

658 659
    def set_attrs(self):
        self.is_custom = True
660 661 662 663 664 665
        self.path_table_np = np.array([(0, 2, -1, -1, -1), (0, 1, 3, -1, -1),
                                       (0, 1, 4, -1, -1),
                                       (0, 2, -1, -1, -1)]).astype(np.int64)
        self.path_code_np = np.array([(0, 0, -1, -1, -1), (1, 1, 1, -1, -1),
                                      (1, 0, 0, -1, -1),
                                      (0, 1, -1, -1, -1)]).astype(np.int64)
666 667 668 669 670

    def test_errors(self):
        pass


Y
Yancey1989 已提交
671 672
if __name__ == '__main__':
    unittest.main()