gpu_info.cc 15.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
liaogang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/platform/gpu_info.h"
16
#include <algorithm>
S
sneaxiy 已提交
17
#include <cstdlib>
18
#include <memory>
L
liaogang 已提交
19

20
#include "gflags/gflags.h"
21
#include "paddle/fluid/platform/cuda_device_guard.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/platform/enforce.h"
23 24
#include "paddle/fluid/platform/lock_guard_ptr.h"
#include "paddle/fluid/platform/macros.h"
H
hutuxian 已提交
25
#include "paddle/fluid/platform/monitor.h"
26
#include "paddle/fluid/string/split.h"
L
liaogang 已提交
27

28 29 30 31 32
DECLARE_double(fraction_of_gpu_memory_to_use);
DECLARE_uint64(initial_gpu_memory_in_mb);
DECLARE_uint64(reallocate_gpu_memory_in_mb);
DECLARE_bool(enable_cublas_tensor_op_math);
DECLARE_string(selected_gpus);
33
DECLARE_uint64(gpu_memory_limit_mb);
34

Z
zhhsplendid 已提交
35 36
constexpr static float fraction_reserve_gpu_memory = 0.05f;

H
hutuxian 已提交
37
USE_GPU_MEM_STAT;
L
liaogang 已提交
38 39 40
namespace paddle {
namespace platform {

41 42 43 44 45
/* Here is a very simple CUDA “pro tip”: cudaDeviceGetAttribute() is a much
faster way to query device properties. You can see details in
https://devblogs.nvidia.com/cuda-pro-tip-the-fast-way-to-query-device-properties/
*/

S
sneaxiy 已提交
46
static int GetCUDADeviceCountImpl() {
47 48 49 50 51
  int driverVersion = 0;
  cudaError_t status = cudaDriverGetVersion(&driverVersion);

  if (!(status == cudaSuccess && driverVersion != 0)) {
    // No GPU driver
52
    VLOG(2) << "GPU Driver Version can't be detected. No GPU driver!";
53 54 55
    return 0;
  }

S
sneaxiy 已提交
56 57 58 59 60 61
  const auto *cuda_visible_devices = std::getenv("CUDA_VISIBLE_DEVICES");
  if (cuda_visible_devices != nullptr) {
    std::string cuda_visible_devices_str(cuda_visible_devices);
    if (std::all_of(cuda_visible_devices_str.begin(),
                    cuda_visible_devices_str.end(),
                    [](char ch) { return ch == ' '; })) {
S
sneaxiy 已提交
62
      VLOG(2) << "CUDA_VISIBLE_DEVICES is set to be empty. No GPU detected.";
S
sneaxiy 已提交
63 64 65
      return 0;
    }
  }
L
liaogang 已提交
66
  int count;
67
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaGetDeviceCount(&count));
L
liaogang 已提交
68 69 70
  return count;
}

S
sneaxiy 已提交
71 72 73 74 75
int GetCUDADeviceCount() {
  static auto dev_cnt = GetCUDADeviceCountImpl();
  return dev_cnt;
}

76
int GetCUDAComputeCapability(int id) {
77 78 79 80 81
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(),
                    platform::errors::InvalidArgument(
                        "Device id must be less than GPU count, "
                        "but received id is: %d. GPU count is: %d.",
                        id, GetCUDADeviceCount()));
82 83 84 85 86 87
  int major, minor;

  auto major_error_code =
      cudaDeviceGetAttribute(&major, cudaDevAttrComputeCapabilityMajor, id);
  auto minor_error_code =
      cudaDeviceGetAttribute(&minor, cudaDevAttrComputeCapabilityMinor, id);
88 89
  PADDLE_ENFORCE_CUDA_SUCCESS(major_error_code);
  PADDLE_ENFORCE_CUDA_SUCCESS(minor_error_code);
90
  return major * 10 + minor;
91 92
}

93
dim3 GetGpuMaxGridDimSize(int id) {
94 95 96 97 98
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(),
                    platform::errors::InvalidArgument(
                        "Device id must be less than GPU count, "
                        "but received id is: %d. GPU count is: %d.",
                        id, GetCUDADeviceCount()));
99 100 101
  dim3 ret;
  int size;
  auto error_code_x = cudaDeviceGetAttribute(&size, cudaDevAttrMaxGridDimX, id);
102
  PADDLE_ENFORCE_CUDA_SUCCESS(error_code_x);
103 104 105
  ret.x = size;

  auto error_code_y = cudaDeviceGetAttribute(&size, cudaDevAttrMaxGridDimY, id);
106
  PADDLE_ENFORCE_CUDA_SUCCESS(error_code_y);
107 108 109
  ret.y = size;

  auto error_code_z = cudaDeviceGetAttribute(&size, cudaDevAttrMaxGridDimZ, id);
110
  PADDLE_ENFORCE_CUDA_SUCCESS(error_code_z);
111 112 113 114
  ret.z = size;
  return ret;
}

C
chengduo 已提交
115
int GetCUDARuntimeVersion(int id) {
116 117 118 119 120
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(),
                    platform::errors::InvalidArgument(
                        "Device id must be less than GPU count, "
                        "but received id is: %d. GPU count is: %d.",
                        id, GetCUDADeviceCount()));
C
chengduo 已提交
121
  int runtime_version = 0;
122
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaRuntimeGetVersion(&runtime_version));
C
chengduo 已提交
123 124 125 126
  return runtime_version;
}

int GetCUDADriverVersion(int id) {
127 128 129 130 131
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(),
                    platform::errors::InvalidArgument(
                        "Device id must be less than GPU count, "
                        "but received id is: %d. GPU count is: %d.",
                        id, GetCUDADeviceCount()));
C
chengduo 已提交
132
  int driver_version = 0;
133
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaDriverGetVersion(&driver_version));
C
chengduo 已提交
134 135 136
  return driver_version;
}

137 138 139 140 141 142 143 144 145 146
bool TensorCoreAvailable() {
#if CUDA_VERSION >= 9000
  int device = GetCurrentDeviceId();
  int driver_version = GetCUDAComputeCapability(device);
  return driver_version >= 70;
#else
  return false;
#endif
}

C
chengduoZH 已提交
147
int GetCUDAMultiProcessors(int id) {
148 149 150 151 152
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(),
                    platform::errors::InvalidArgument(
                        "Device id must be less than GPU count, "
                        "but received id is: %d. GPU count is: %d.",
                        id, GetCUDADeviceCount()));
C
chengduoZH 已提交
153
  int count;
154 155
  PADDLE_ENFORCE_CUDA_SUCCESS(
      cudaDeviceGetAttribute(&count, cudaDevAttrMultiProcessorCount, id));
C
chengduoZH 已提交
156 157 158 159
  return count;
}

int GetCUDAMaxThreadsPerMultiProcessor(int id) {
160 161 162 163 164
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(),
                    platform::errors::InvalidArgument(
                        "Device id must be less than GPU count, "
                        "but received id is: %d. GPU count is: %d.",
                        id, GetCUDADeviceCount()));
C
chengduoZH 已提交
165
  int count;
166 167
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaDeviceGetAttribute(
      &count, cudaDevAttrMaxThreadsPerMultiProcessor, id));
C
chengduoZH 已提交
168 169 170
  return count;
}

171
int GetCUDAMaxThreadsPerBlock(int id) {
172 173 174 175 176
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(),
                    platform::errors::InvalidArgument(
                        "Device id must be less than GPU count, "
                        "but received id is: %d. GPU count is: %d.",
                        id, GetCUDADeviceCount()));
177
  int count;
178 179
  PADDLE_ENFORCE_CUDA_SUCCESS(
      cudaDeviceGetAttribute(&count, cudaDevAttrMaxThreadsPerBlock, id));
180 181 182
  return count;
}

L
liaogang 已提交
183 184
int GetCurrentDeviceId() {
  int device_id;
185
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaGetDevice(&device_id));
L
liaogang 已提交
186 187 188
  return device_id;
}

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
//! Get a list of device ids from environment variable or use all.
std::vector<int> GetSelectedDevices() {
  // use user specified GPUs in single-node multi-process mode.
  std::vector<int> devices;
  if (!FLAGS_selected_gpus.empty()) {
    auto devices_str = paddle::string::Split(FLAGS_selected_gpus, ',');
    for (auto id : devices_str) {
      devices.push_back(atoi(id.c_str()));
    }
  } else {
    int count = GetCUDADeviceCount();
    for (int i = 0; i < count; ++i) {
      devices.push_back(i);
    }
  }
  return devices;
}

L
liaogang 已提交
207
void SetDeviceId(int id) {
Q
qijun 已提交
208
  // TODO(qijun): find a better way to cache the cuda device count
209 210 211 212 213 214
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(),
                    platform::errors::InvalidArgument(
                        "Device id must be less than GPU count, "
                        "but received id is: %d. GPU count is: %d.",
                        id, GetCUDADeviceCount()));
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaSetDevice(id));
L
liaogang 已提交
215 216
}

217
void GpuMemoryUsage(size_t *available, size_t *total) {
218 219 220
  size_t actual_available, actual_total;
  RecordedCudaMemGetInfo(available, total, &actual_available, &actual_total,
                         platform::GetCurrentDeviceId());
L
liaogang 已提交
221 222
}

223
size_t GpuAvailableMemToAlloc() {
L
liaogang 已提交
224 225
  size_t total = 0;
  size_t available = 0;
226
  GpuMemoryUsage(&available, &total);
227 228
  size_t reserving =
      static_cast<size_t>(fraction_reserve_gpu_memory * available);
229
  // If available size is less than minimum chunk size, no usable memory exists
230
  size_t available_to_alloc = available - reserving;
231
  size_t min_chunk_size = GpuMinChunkSize();
232 233 234
  if (available_to_alloc < min_chunk_size) {
    available_to_alloc = 0;
  }
235 236 237
  VLOG(10) << "GPU usage " << (available >> 20) << "M/" << (total >> 20)
           << "M, " << (available_to_alloc >> 20) << "M available to allocate";
  return available_to_alloc;
Z
zhhsplendid 已提交
238 239
}

240 241 242
size_t GpuMaxAllocSize() {
  return std::max(GpuInitAllocSize(), GpuReallocSize());
}
Z
zhhsplendid 已提交
243

244 245
static size_t GpuAllocSize(bool realloc) {
  size_t available_to_alloc = GpuAvailableMemToAlloc();
G
GaoWei8 已提交
246 247 248
  PADDLE_ENFORCE_GT(
      available_to_alloc, 0,
      platform::errors::ResourceExhausted("Not enough available GPU memory."));
249 250 251 252 253 254 255
  // If FLAGS_initial_gpu_memory_in_mb is 0, then initial memory will be
  // allocated by fraction
  size_t flag_mb = realloc ? FLAGS_reallocate_gpu_memory_in_mb
                           : FLAGS_initial_gpu_memory_in_mb;
  size_t alloc_bytes =
      (flag_mb > 0ul ? flag_mb << 20 : available_to_alloc *
                                           FLAGS_fraction_of_gpu_memory_to_use);
G
GaoWei8 已提交
256 257 258
  PADDLE_ENFORCE_GE(
      available_to_alloc, alloc_bytes,
      platform::errors::ResourceExhausted("Not enough available GPU memory."));
259 260 261 262
  VLOG(10) << "Alloc size is " << (alloc_bytes >> 20)
           << " MiB, is it Re-alloc: " << realloc;
  return alloc_bytes;
}
Z
zhhsplendid 已提交
263

264
size_t GpuInitAllocSize() { return GpuAllocSize(/* realloc = */ false); }
Z
zhhsplendid 已提交
265

266
size_t GpuReallocSize() { return GpuAllocSize(/* realloc = */ true); }
L
liaogang 已提交
267

L
liaogang 已提交
268 269 270 271 272 273
size_t GpuMinChunkSize() {
  // Allow to allocate the minimum chunk size is 256 bytes.
  return 1 << 8;
}

size_t GpuMaxChunkSize() {
274 275 276
  size_t max_chunk_size = GpuMaxAllocSize();
  VLOG(10) << "Max chunk size " << (max_chunk_size >> 20) << "M";
  return max_chunk_size;
L
liaogang 已提交
277 278
}

L
liaogang 已提交
279 280
void GpuMemcpyAsync(void *dst, const void *src, size_t count,
                    enum cudaMemcpyKind kind, cudaStream_t stream) {
281
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaMemcpyAsync(dst, src, count, kind, stream));
L
liaogang 已提交
282 283
}

284 285
void GpuMemcpySync(void *dst, const void *src, size_t count,
                   enum cudaMemcpyKind kind) {
286
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaMemcpy(dst, src, count, kind));
287 288 289 290
}

void GpuMemcpyPeerAsync(void *dst, int dst_device, const void *src,
                        int src_device, size_t count, cudaStream_t stream) {
291 292
  PADDLE_ENFORCE_CUDA_SUCCESS(
      cudaMemcpyPeerAsync(dst, dst_device, src, src_device, count, stream));
293 294 295 296
}

void GpuMemcpyPeerSync(void *dst, int dst_device, const void *src,
                       int src_device, size_t count) {
297 298
  PADDLE_ENFORCE_CUDA_SUCCESS(
      cudaMemcpyPeer(dst, dst_device, src, src_device, count));
L
liaogang 已提交
299
}
D
dzhwinter 已提交
300 301

void GpuMemsetAsync(void *dst, int value, size_t count, cudaStream_t stream) {
302
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaMemsetAsync(dst, value, count, stream));
D
dzhwinter 已提交
303
}
304

石晓伟 已提交
305
void GpuStreamSync(cudaStream_t stream) {
306
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamSynchronize(stream));
石晓伟 已提交
307 308
}

309
static void RaiseNonOutOfMemoryError(cudaError_t *status) {
310 311 312 313 314 315 316 317 318 319 320
  if (*status == cudaErrorMemoryAllocation) {
    *status = cudaSuccess;
  }
  PADDLE_ENFORCE_CUDA_SUCCESS(*status);

  *status = cudaGetLastError();
  if (*status == cudaErrorMemoryAllocation) {
    *status = cudaSuccess;
  }
  PADDLE_ENFORCE_CUDA_SUCCESS(*status);
}
石晓伟 已提交
321

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
class RecordedCudaMallocHelper {
 private:
  explicit RecordedCudaMallocHelper(int dev_id, uint64_t limit_size = 0)
      : dev_id_(dev_id), limit_size_(limit_size) {
    if (NeedRecord()) {
      mtx_.reset(new std::mutex());
    }
  }

  DISABLE_COPY_AND_ASSIGN(RecordedCudaMallocHelper);

 public:
  static RecordedCudaMallocHelper *Instance(int dev_id) {
    std::call_once(once_flag_, [] {
      int dev_cnt = GetCUDADeviceCount();
      instances_.reserve(dev_cnt);
      for (int i = 0; i < dev_cnt; ++i) {
        instances_.emplace_back(
            new RecordedCudaMallocHelper(i, FLAGS_gpu_memory_limit_mb << 20));
      }
    });

    PADDLE_ENFORCE_GE(
        dev_id, 0,
        platform::errors::OutOfRange(
            "Device id must be not less than 0, but got %d", dev_id));
    PADDLE_ENFORCE_LT(
        dev_id, instances_.size(),
        platform::errors::OutOfRange("Device id %d exceeds gpu card number %d",
                                     dev_id, instances_.size()));
    return instances_[dev_id].get();
  }

  /**
   * Try to allocate `size` gpu memory. Only cudaErrorMemoryAllocation
   * or cudaSuccess would be returned, and the cudaGetLastError() flag
   * would be clear.
   */
  cudaError_t Malloc(void **ptr, size_t size) {
    LockGuardPtr<std::mutex> lock(mtx_);
    if (UNLIKELY(NeedRecord() && cur_size_ + size > limit_size_)) {
      return cudaErrorMemoryAllocation;
    }

    CUDADeviceGuard guard(dev_id_);
    auto result = cudaMalloc(ptr, size);
    if (result == cudaSuccess) {
      if (NeedRecord()) {
        cur_size_ += size;
      }
H
hutuxian 已提交
372
      STAT_INT_ADD("STAT_gpu" + std::to_string(dev_id_) + "_mem_size", size);
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
      return cudaSuccess;
    } else {
      RaiseNonOutOfMemoryError(&result);
      // Non out of memory error would be raised inside
      // RaiseNonOutOfMemoryError. Therefore, we can
      // return cudaErrorMemoryAllocation directly here.
      return cudaErrorMemoryAllocation;
    }
  }

  /**
   * Free gpu memory. Usually, free is not allowed to raise error.
   * If it does raise error, the process should be crashed.
   */
  void Free(void *ptr, size_t size) {
    // Purposefully allow cudaErrorCudartUnloading, because
    // that is returned if you ever call cudaFree after the
    // driver has already shutdown. This happens only if the
    // process is terminating, in which case we don't care if
    // cudaFree succeeds.
    CUDADeviceGuard guard(dev_id_);
    auto err = cudaFree(ptr);
    if (err != cudaErrorCudartUnloading) {
396
      PADDLE_ENFORCE_CUDA_SUCCESS(err);
397 398 399 400
      if (NeedRecord()) {
        std::lock_guard<std::mutex> guard(*mtx_);
        cur_size_ -= size;
      }
H
hutuxian 已提交
401
      STAT_INT_SUB("STAT_gpu" + std::to_string(dev_id_) + "_mem_size", size);
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
    } else {
      cudaGetLastError();  // clear the error flag when cudaErrorCudartUnloading
    }
  }

  bool GetMemInfo(size_t *avail, size_t *total, size_t *actual_avail,
                  size_t *actual_total) {
    {
      CUDADeviceGuard guard(dev_id_);
      auto result = cudaMemGetInfo(actual_avail, actual_total);
      if (result != cudaSuccess) {
        *actual_avail = 0;
      }
      RaiseNonOutOfMemoryError(&result);
    }

    if (NeedRecord()) {
      std::lock_guard<std::mutex> guard(*mtx_);
      *avail = std::min(*actual_avail, limit_size_ - cur_size_);
      *total = std::min(*actual_total, limit_size_);
      return *total < *actual_total;
    } else {
      *avail = *actual_avail;
      *total = *actual_total;
      return false;
    }
  }

  inline bool NeedRecord() const { return limit_size_ != 0; }

  uint64_t RecordedSize() const {
    LockGuardPtr<std::mutex> lock(mtx_);
    return NeedRecord() ? cur_size_ : 0;
  }

  uint64_t LimitSize() const { return limit_size_; }

 private:
  const int dev_id_;
  const uint64_t limit_size_;
  uint64_t cur_size_{0};

  mutable std::unique_ptr<std::mutex> mtx_;

  static std::once_flag once_flag_;
  static std::vector<std::unique_ptr<RecordedCudaMallocHelper>> instances_;
};

std::once_flag RecordedCudaMallocHelper::once_flag_;
std::vector<std::unique_ptr<RecordedCudaMallocHelper>>
    RecordedCudaMallocHelper::instances_;

cudaError_t RecordedCudaMalloc(void **ptr, size_t size, int dev_id) {
  return RecordedCudaMallocHelper::Instance(dev_id)->Malloc(ptr, size);
}

void RecordedCudaFree(void *p, size_t size, int dev_id) {
  return RecordedCudaMallocHelper::Instance(dev_id)->Free(p, size);
}

bool RecordedCudaMemGetInfo(size_t *avail, size_t *total, size_t *actual_avail,
                            size_t *actual_total, int dev_id) {
  return RecordedCudaMallocHelper::Instance(dev_id)->GetMemInfo(
      avail, total, actual_avail, actual_total);
}

uint64_t RecordedCudaMallocSize(int dev_id) {
  return RecordedCudaMallocHelper::Instance(dev_id)->RecordedSize();
}

bool IsCudaMallocRecorded(int dev_id) {
  return RecordedCudaMallocHelper::Instance(dev_id)->NeedRecord();
}

L
liaogang 已提交
476 477
}  // namespace platform
}  // namespace paddle