nets.py 6.8 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import layers
F
fengjiayi 已提交
16

17 18 19
__all__ = [
    "simple_img_conv_pool",
    "sequence_conv_pool",
20
    "glu",
21
    "dot_product_attention",
22
]
D
dzhwinter 已提交
23

F
fengjiayi 已提交
24 25 26

def simple_img_conv_pool(input,
                         num_filters,
D
dzhwinter 已提交
27
                         filter_size,
F
fengjiayi 已提交
28 29 30
                         pool_size,
                         pool_stride,
                         act,
F
fengjiayi 已提交
31
                         param_attr=None,
C
chengduoZH 已提交
32
                         pool_type='max',
C
chengduoZH 已提交
33
                         use_cudnn=True):
F
fengjiayi 已提交
34 35 36 37
    conv_out = layers.conv2d(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
F
fengjiayi 已提交
38
        param_attr=param_attr,
C
chengduoZH 已提交
39 40
        act=act,
        use_cudnn=use_cudnn)
F
fengjiayi 已提交
41 42 43 44

    pool_out = layers.pool2d(
        input=conv_out,
        pool_size=pool_size,
Q
Qiao Longfei 已提交
45
        pool_type=pool_type,
C
chengduoZH 已提交
46 47
        pool_stride=pool_stride,
        use_cudnn=use_cudnn)
Q
Qiao Longfei 已提交
48 49 50 51 52 53 54 55 56
    return pool_out


def img_conv_group(input,
                   conv_num_filter,
                   pool_size,
                   conv_padding=1,
                   conv_filter_size=3,
                   conv_act=None,
F
fengjiayi 已提交
57
                   param_attr=None,
Q
Qiao Longfei 已提交
58 59 60
                   conv_with_batchnorm=False,
                   conv_batchnorm_drop_rate=None,
                   pool_stride=1,
C
chengduoZH 已提交
61
                   pool_type=None,
C
chengduoZH 已提交
62
                   use_cudnn=True):
Q
Qiao Longfei 已提交
63 64 65 66 67
    """
    Image Convolution Group, Used for vgg net.
    """
    tmp = input
    assert isinstance(conv_num_filter, list) or \
68
        isinstance(conv_num_filter, tuple)
Q
Qiao Longfei 已提交
69 70 71 72 73 74 75 76 77

    def __extend_list__(obj):
        if not hasattr(obj, '__len__'):
            return [obj] * len(conv_num_filter)
        else:
            return obj

    conv_padding = __extend_list__(conv_padding)
    conv_filter_size = __extend_list__(conv_filter_size)
F
fengjiayi 已提交
78
    param_attr = __extend_list__(param_attr)
Q
Qiao Longfei 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91
    conv_with_batchnorm = __extend_list__(conv_with_batchnorm)
    conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate)

    for i in xrange(len(conv_num_filter)):
        local_conv_act = conv_act
        if conv_with_batchnorm[i]:
            local_conv_act = None

        tmp = layers.conv2d(
            input=tmp,
            num_filters=conv_num_filter[i],
            filter_size=conv_filter_size[i],
            padding=conv_padding[i],
F
fengjiayi 已提交
92
            param_attr=param_attr[i],
C
chengduoZH 已提交
93
            act=local_conv_act,
C
chengduoZH 已提交
94
            use_cudnn=use_cudnn)
Q
Qiao Longfei 已提交
95 96

        if conv_with_batchnorm[i]:
97
            tmp = layers.batch_norm(input=tmp, act=conv_act)
Q
Qiao Longfei 已提交
98 99
            drop_rate = conv_batchnorm_drop_rate[i]
            if abs(drop_rate) > 1e-5:
100
                tmp = layers.dropout(x=tmp, dropout_prob=drop_rate)
Q
Qiao Longfei 已提交
101 102 103 104 105

    pool_out = layers.pool2d(
        input=tmp,
        pool_size=pool_size,
        pool_type=pool_type,
C
chengduoZH 已提交
106
        pool_stride=pool_stride,
C
chengduoZH 已提交
107
        use_cudnn=use_cudnn)
F
fengjiayi 已提交
108
    return pool_out
D
dzhwinter 已提交
109 110 111 112 113


def sequence_conv_pool(input,
                       num_filters,
                       filter_size,
F
fengjiayi 已提交
114
                       param_attr=None,
115
                       act="sigmoid",
116
                       pool_type="max"):
D
dzhwinter 已提交
117 118 119 120
    conv_out = layers.sequence_conv(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
F
fengjiayi 已提交
121
        param_attr=param_attr,
122
        act=act)
D
dzhwinter 已提交
123

124
    pool_out = layers.sequence_pool(input=conv_out, pool_type=pool_type)
D
dzhwinter 已提交
125
    return pool_out
G
guosheng 已提交
126 127 128 129


def glu(input, dim=-1):
    """
G
guosheng 已提交
130 131 132 133
    The gated linear unit composed by split, sigmoid activation and elementwise 
    multiplication. Specifically, Split the input into two equal sized parts 
    :math:`a` and :math:`b` along the given dimension and then compute as 
    following:
G
guosheng 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

        .. math::

            {GLU}(a, b)= a \otimes \sigma(b)

    Refer to `Language Modeling with Gated Convolutional Networks 
    <https://arxiv.org/pdf/1612.08083.pdf>`_.
    
    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (int): The dimension along which to split. If :math:`dim < 0`, the 
            dimension to split along is :math:`rank(input) + dim`.

    Returns:
        Variable: The Tensor variable with half the size of input.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 6, 9]
154
            fluid.nets.glu(input=x, dim=1)  # shape of output: [3, 3, 9]
G
guosheng 已提交
155 156 157
    """

    a, b = layers.split(input, num_or_sections=2, dim=dim)
G
guosheng 已提交
158 159
    act_b = layers.sigmoid(x=b)
    out = layers.elementwise_mul(x=a, y=act_b)
G
guosheng 已提交
160
    return out
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212


def dot_product_attention(querys, keys, values):
    """
    The dot-product attention.

    Attention mechanism can be seen as mapping a query and a set of key-value 
    pairs to an output. The output is computed as a weighted sum of the values, 
    where the weight assigned to each value is computed by a compatibility 
    function (dot-product here) of the query with the corresponding key.
    
    The dot-product attention can be implemented through (batch) matrix 
    multipication as follows:

        .. math::

            Attention(Q, K, V)= softmax(QK^\mathrm{T})V

    Refer to `Attention Is All You Need 
    <https://arxiv.org/pdf/1706.03762.pdf>`_.

    Note that batch data containing sequences with different lengths is not 
    supported by this because of the (batch) matrix multipication.
    
    Args:
        query (Variable): The input variable which is a Tensor or LoDTensor.
        key (Variable): The input variable which is a Tensor or LoDTensor.
        value (Variable): The input variable which is a Tensor or LoDTensor.

    Returns:
        tuple: The Tensor variables representing the output and attention scores.

    Examples:
        .. code-block:: python

            # Suppose q, k, v are tensor variables with the following shape:
            # q: [3, 5, 9], k: [3, 6, 9], v: [3, 6, 10]
            out, attn_scores = fluid.nets.dot_product_attention(q, k, v)
            out.shape  # [3, 5, 10]
            attn_scores.shape  # [3, 5, 6]
    """
    assert keys.shape[-2] == values.shape[
        -2], 'The shapes of keys and values mismatch.'
    assert querys.shape[-1] == keys.shape[
        -1], 'The shapes of querys and keys mismatch.'
    product = layers.matmul(x=querys, y=keys, transpose_y=True)
    attn_scores = layers.reshape(
        x=layers.reshape(
            x=product, shape=[-1, product.shape[-1]], act='softmax'),
        shape=product.shape)
    out = layers.matmul(attn_scores, values)
    return out, attn_scores