test_where_op.py 7.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
#Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.tensor as tensor
import paddle.fluid.core as core
from op_test import OpTest
from paddle.fluid import compiler, Program, program_guard
from paddle.fluid.op import Operator
from paddle.fluid.backward import append_backward


class TestWhereOp(OpTest):
    def setUp(self):
        self.op_type = "where"
        self.init_config()
        self.inputs = {'Condition': self.cond, 'X': self.x, 'Y': self.y}
        self.outputs = {'Out': np.where(self.cond, self.x, self.y)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X', 'Y'], 'Out')

    def init_config(self):
        self.x = np.random.uniform(-3, 5, (100)).astype("float64")
        self.y = np.random.uniform(-3, 5, (100)).astype("float64")
        self.cond = np.zeros((100)).astype("bool")


class TestWhereOp2(TestWhereOp):
    def init_config(self):
        self.x = np.random.uniform(-5, 5, (60, 2)).astype("float64")
        self.y = np.random.uniform(-5, 5, (60, 2)).astype("float64")
        self.cond = np.ones((60, 2)).astype("bool")


class TestWhereOp3(TestWhereOp):
    def init_config(self):
        self.x = np.random.uniform(-3, 5, (20, 2, 4)).astype("float64")
        self.y = np.random.uniform(-3, 5, (20, 2, 4)).astype("float64")
        self.cond = np.array(np.random.randint(2, size=(20, 2, 4)), dtype=bool)


class TestWhereAPI(unittest.TestCase):
    def test_api(self, use_cuda=False):
        main_program = Program()
        with fluid.program_guard(main_program):
            x = fluid.layers.data(name='x', shape=[4], dtype='float32')
            y = fluid.layers.data(name='y', shape=[4], dtype='float32')
            x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype("float32")
            y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype("float32")
            cond_i = np.array([False, False, True, True]).astype("bool")
71
            result = tensor.where(x > 1, x=x, y=y)
72

73 74 75 76 77 78 79 80 81 82
            for use_cuda in [False, True]:
                if use_cuda and not fluid.core.is_compiled_with_cuda():
                    return
                place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
                exe = fluid.Executor(place)
                out = exe.run(fluid.default_main_program(),
                              feed={'x': x_i,
                                    'y': y_i},
                              fetch_list=[result])
                assert np.array_equal(out[0], np.where(cond_i, x_i, y_i))
83 84 85

    def test_grad(self, use_cuda=False):
        main_program = Program()
86 87 88 89 90 91
        with fluid.program_guard(main_program):
            x = fluid.layers.data(name='x', shape=[4], dtype='float32')
            y = fluid.layers.data(name='y', shape=[4], dtype='float32')
            for x_stop_gradient, y_stop_gradient in [[False, False],
                                                     [True, False],
                                                     [False, True]]:
92 93 94 95 96
                x.stop_gradient = x_stop_gradient
                y.stop_gradient = y_stop_gradient
                x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype("float32")
                y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype("float32")
                cond_i = np.array([False, False, True, True]).astype("bool")
97
                result = tensor.where(x > 1, x=x, y=y)
98 99 100 101 102
                x_mean = layers.mean(x)
                append_backward(x_mean)
                y_mean = layers.mean(y)
                append_backward(y_mean)

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
                for use_cuda in [False, True]:
                    if use_cuda and not fluid.core.is_compiled_with_cuda():
                        return
                    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
                    exe = fluid.Executor(place)
                    out = exe.run(
                        fluid.default_main_program(),
                        feed={'x': x_i,
                              'y': y_i},
                        fetch_list=[result, x.grad_name, y.grad_name])
                    x_grad = [0.25] * 4
                    y_grad = [0.25] * 4
                    assert np.array_equal(out[0], np.where(cond_i, x_i, y_i))
                    assert np.array_equal(out[1], x_grad)
                    assert np.array_equal(out[2], y_grad)
118 119 120 121 122 123 124

    def test_api_broadcast(self, use_cuda=False):
        main_program = Program()
        with fluid.program_guard(main_program):
            x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[4, 2], dtype='float32')
            x_i = np.array([[0.9383, 0.1983, 3.2, 1.2]]).astype("float32")
125 126
            y_i = np.array([[1.0, 1.0, 1.0, 1.0],
                            [1.0, 1.0, 1.0, 1.0]]).astype("float32")
127 128
            cond_i = np.array([[False, False, True, True],
                               [False, False, True, True]]).astype("bool")
129 130 131 132 133 134 135 136 137 138 139 140
            result = tensor.where(x > 1, x=x, y=y)

            for use_cuda in [False, True]:
                if use_cuda and not fluid.core.is_compiled_with_cuda():
                    return
                place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
                exe = fluid.Executor(place)
                out = exe.run(fluid.default_main_program(),
                              feed={'x': x_i,
                                    'y': y_i},
                              fetch_list=[result])
                assert np.array_equal(out[0], np.where(cond_i, x_i, y_i))
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178


class TestWhereDygraphAPI(unittest.TestCase):
    def test_api(self):
        with fluid.dygraph.guard():
            x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype("float64")
            y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype("float64")
            cond_i = np.array([False, False, True, True]).astype("bool")
            x = fluid.dygraph.to_variable(x_i)
            y = fluid.dygraph.to_variable(y_i)
            cond = fluid.dygraph.to_variable(cond_i)
            out = tensor.where(cond, x, y)
            assert np.array_equal(out.numpy(), np.where(cond_i, x_i, y_i))


class TestWhereOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype("float64")
            y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype("float64")
            cond_i = np.array([False, False, True, True]).astype("bool")

            def test_Variable():
                tensor.where(cond_i, x_i, y_i)

            self.assertRaises(TypeError, test_Variable)

            def test_type():
                x = fluid.layers.data(name='x', shape=[4], dtype='bool')
                y = fluid.layers.data(name='y', shape=[4], dtype='float16')
                cond = fluid.layers.data(name='cond', shape=[4], dtype='int32')
                tensor.where(cond, x, y)

            self.assertRaises(TypeError, test_type)


if __name__ == '__main__':
    unittest.main()