test_unsqueeze_op.py 9.5 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
import unittest
17

18
import numpy as np
19

20 21
import paddle
import paddle.fluid as fluid
22
from op_test import OpTest
23

24
paddle.enable_static()
25 26 27


# Correct: General.
28
class TestUnsqueezeOp(OpTest):
29
    def setUp(self):
30
        self.init_test_case()
31
        self.op_type = "unsqueeze"
32
        self.inputs = {"X": np.random.random(self.ori_shape).astype("float64")}
C
chenweihang 已提交
33
        self.init_attrs()
34
        self.outputs = {"Out": self.inputs["X"].reshape(self.new_shape)}
35 36

    def test_check_output(self):
37
        self.check_output()
38 39 40 41

    def test_check_grad(self):
        self.check_grad(["X"], "Out")

42
    def init_test_case(self):
Z
zhupengyang 已提交
43
        self.ori_shape = (3, 40)
44
        self.axes = (1, 2)
Z
zhupengyang 已提交
45
        self.new_shape = (3, 1, 1, 40)
46

C
chenweihang 已提交
47
    def init_attrs(self):
48
        self.attrs = {"axes": self.axes}
C
chenweihang 已提交
49

50

51 52 53
# Correct: Single input index.
class TestUnsqueezeOp1(TestUnsqueezeOp):
    def init_test_case(self):
Z
zhupengyang 已提交
54
        self.ori_shape = (20, 5)
55
        self.axes = (-1, )
Z
zhupengyang 已提交
56
        self.new_shape = (20, 5, 1)
57 58 59


# Correct: Mixed input axis.
60 61
class TestUnsqueezeOp2(TestUnsqueezeOp):
    def init_test_case(self):
Z
zhupengyang 已提交
62
        self.ori_shape = (20, 5)
63
        self.axes = (0, -1)
Z
zhupengyang 已提交
64
        self.new_shape = (1, 20, 5, 1)
65 66


67
# Correct: There is duplicated axis.
68 69
class TestUnsqueezeOp3(TestUnsqueezeOp):
    def init_test_case(self):
Z
zhupengyang 已提交
70
        self.ori_shape = (10, 2, 5)
71
        self.axes = (0, 3, 3)
Z
zhupengyang 已提交
72
        self.new_shape = (1, 10, 2, 1, 1, 5)
73 74


75 76 77
# Correct: Reversed axes.
class TestUnsqueezeOp4(TestUnsqueezeOp):
    def init_test_case(self):
Z
zhupengyang 已提交
78
        self.ori_shape = (10, 2, 5)
79
        self.axes = (3, 1, 1)
Z
zhupengyang 已提交
80
        self.new_shape = (10, 1, 1, 2, 5, 1)
81 82


83 84
class API_TestUnsqueeze(unittest.TestCase):
    def test_out(self):
85 86 87 88
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            data1 = paddle.static.data('data1', shape=[-1, 10], dtype='float64')
89
            result_squeeze = paddle.unsqueeze(data1, axis=[1])
90 91
            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
92 93 94 95 96 97 98 99 100
            input1 = np.random.random([5, 1, 10]).astype('float64')
            input = np.squeeze(input1, axis=1)
            result, = exe.run(feed={"data1": input},
                              fetch_list=[result_squeeze])
            self.assertTrue(np.allclose(input1, result))


class TestUnsqueezeOpError(unittest.TestCase):
    def test_errors(self):
101 102 103
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
104 105
            # The type of axis in split_op should be int or Variable.
            def test_axes_type():
106
                x6 = paddle.static.data(
107
                    shape=[-1, 10], dtype='float16', name='x3')
108
                paddle.unsqueeze(x6, axis=3.2)
109 110 111 112 113 114

            self.assertRaises(TypeError, test_axes_type)


class API_TestUnsqueeze2(unittest.TestCase):
    def test_out(self):
115 116 117 118 119
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            data1 = paddle.static.data('data1', shape=[-1, 10], dtype='float64')
            data2 = paddle.static.data('data2', shape=[1], dtype='int32')
120
            result_squeeze = paddle.unsqueeze(data1, axis=data2)
121 122
            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
123 124 125 126 127 128 129 130 131 132 133
            input1 = np.random.random([5, 1, 10]).astype('float64')
            input2 = np.array([1]).astype('int32')
            input = np.squeeze(input1, axis=1)
            result1, = exe.run(feed={"data1": input,
                                     "data2": input2},
                               fetch_list=[result_squeeze])
            self.assertTrue(np.allclose(input1, result1))


class API_TestUnsqueeze3(unittest.TestCase):
    def test_out(self):
134 135 136 137 138
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            data1 = paddle.static.data('data1', shape=[-1, 10], dtype='float64')
            data2 = paddle.static.data('data2', shape=[1], dtype='int32')
139
            result_squeeze = paddle.unsqueeze(data1, axis=[data2, 3])
140 141
            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
142 143 144 145 146 147
            input1 = np.random.random([5, 1, 10, 1]).astype('float64')
            input2 = np.array([1]).astype('int32')
            input = np.squeeze(input1)
            result1, = exe.run(feed={"data1": input,
                                     "data2": input2},
                               fetch_list=[result_squeeze])
L
Leo Chen 已提交
148 149
            self.assertTrue(np.array_equal(input1, result1))
            self.assertEqual(input1.shape, result1.shape)
150 151 152 153


class API_TestDyUnsqueeze(unittest.TestCase):
    def test_out(self):
154 155 156 157 158 159 160 161
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("int32")
        input1 = np.expand_dims(input_1, axis=1)
        input = paddle.to_tensor(input_1)
        output = paddle.unsqueeze(input, axis=[1])
        out_np = output.numpy()
        self.assertTrue(np.array_equal(input1, out_np))
        self.assertEqual(input1.shape, out_np.shape)
162 163 164 165


class API_TestDyUnsqueeze2(unittest.TestCase):
    def test_out(self):
166 167 168 169 170 171 172 173
        paddle.disable_static()
        input1 = np.random.random([5, 10]).astype("int32")
        out1 = np.expand_dims(input1, axis=1)
        input = paddle.to_tensor(input1)
        output = paddle.unsqueeze(input, axis=1)
        out_np = output.numpy()
        self.assertTrue(np.array_equal(out1, out_np))
        self.assertEqual(out1.shape, out_np.shape)
L
Leo Chen 已提交
174 175 176 177


class API_TestDyUnsqueezeAxisTensor(unittest.TestCase):
    def test_out(self):
178 179 180 181 182 183 184 185 186
        paddle.disable_static()
        input1 = np.random.random([5, 10]).astype("int32")
        out1 = np.expand_dims(input1, axis=1)
        out1 = np.expand_dims(out1, axis=2)
        input = paddle.to_tensor(input1)
        output = paddle.unsqueeze(input, axis=paddle.to_tensor([1, 2]))
        out_np = output.numpy()
        self.assertTrue(np.array_equal(out1, out_np))
        self.assertEqual(out1.shape, out_np.shape)
L
Leo Chen 已提交
187 188 189 190


class API_TestDyUnsqueezeAxisTensorList(unittest.TestCase):
    def test_out(self):
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
        paddle.disable_static()
        input1 = np.random.random([5, 10]).astype("int32")
        # Actually, expand_dims supports tuple since version 1.18.0
        out1 = np.expand_dims(input1, axis=1)
        out1 = np.expand_dims(out1, axis=2)
        input = paddle.to_tensor(input1)
        output = paddle.unsqueeze(
            paddle.to_tensor(input1),
            axis=[paddle.to_tensor([1]), paddle.to_tensor([2])])
        out_np = output.numpy()
        self.assertTrue(np.array_equal(out1, out_np))
        self.assertEqual(out1.shape, out_np.shape)


class API_TestDygraphUnSqueeze(unittest.TestCase):
206 207 208 209 210 211
    def setUp(self):
        self.executed_api()

    def executed_api(self):
        self.unsqueeze = paddle.unsqueeze

212 213 214 215
    def test_out(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("int32")
        input = paddle.to_tensor(input_1)
216
        output = self.unsqueeze(input, axis=[1])
217 218 219 220 221 222 223 224
        out_np = output.numpy()
        expected_out = np.expand_dims(input_1, axis=1)
        self.assertTrue(np.allclose(expected_out, out_np))

    def test_out_int8(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("int8")
        input = paddle.to_tensor(input_1)
225
        output = self.unsqueeze(input, axis=[1])
226 227 228 229 230 231 232 233
        out_np = output.numpy()
        expected_out = np.expand_dims(input_1, axis=1)
        self.assertTrue(np.allclose(expected_out, out_np))

    def test_out_uint8(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("uint8")
        input = paddle.to_tensor(input_1)
234
        output = self.unsqueeze(input, axis=1)
235 236 237 238 239 240 241 242
        out_np = output.numpy()
        expected_out = np.expand_dims(input_1, axis=1)
        self.assertTrue(np.allclose(expected_out, out_np))

    def test_axis_not_list(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("int32")
        input = paddle.to_tensor(input_1)
243
        output = self.unsqueeze(input, axis=1)
244 245 246 247 248 249 250 251
        out_np = output.numpy()
        expected_out = np.expand_dims(input_1, axis=1)
        self.assertTrue(np.allclose(expected_out, out_np))

    def test_dimension_not_1(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("int32")
        input = paddle.to_tensor(input_1)
252
        output = self.unsqueeze(input, axis=(1, 2))
253 254 255
        out_np = output.numpy()
        expected_out = np.expand_dims(input_1, axis=1)
        self.assertTrue(np.allclose(expected_out, out_np))
256 257


258 259 260 261 262
class API_TestDygraphUnSqueezeInplace(API_TestDygraphUnSqueeze):
    def executed_api(self):
        self.unsqueeze = paddle.unsqueeze_


263 264
if __name__ == "__main__":
    unittest.main()