executor_test.cc 10.1 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/framework/executor.h"
Q
qijun 已提交
16
#include <vector>
Y
Yang Yang 已提交
17
#include "gtest/gtest.h"
Y
Yang Yang 已提交
18
#include "paddle/framework/attribute.h"
Y
Yang Yang 已提交
19 20 21 22 23
#include "paddle/framework/grad_op_builder.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"

USE_OP(elementwise_add);
Y
Yang Yang 已提交
24
USE_OP(gaussian_random);
Q
qijun 已提交
25
USE_OP(feed);
Q
qijun 已提交
26
USE_OP(fetch);
Q
qijun 已提交
27

Y
Yang Yang 已提交
28
using std::string;
Q
qijun 已提交
29 30 31
using namespace paddle::platform;
using namespace paddle::framework;

Y
Yang Yang 已提交
32 33 34
typedef paddle::framework::BlockDesc proto_block;
typedef paddle::framework::OpDesc proto_op;

35 36
void add_gaussian_random_op(string var_name, std::vector<int>& dim,
                            proto_block* block) {
Y
Yang Yang 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
  // insert variable
  auto a = block->add_vars();
  a->set_name(var_name);
  auto a_lt = a->mutable_lod_tensor();
  a_lt->set_data_type(paddle::framework::DataType::FP32);
  for (int i : dim) {
    a_lt->add_dims(i);
  }

  // insert operation
  auto op = block->add_ops();
  op->set_type("gaussian_random");
  auto dims = op->add_attrs();
  dims->set_name("dims");
  dims->set_type(paddle::framework::AttrType::INTS);
  for (int i : dim) {
    dims->add_ints(i);
  }
  auto Out = op->add_outputs();
  Out->set_parameter("Out");
  Out->add_arguments(var_name);
}

60 61
void add_feed_op(string var_name, std::vector<int>& dim, int index,
                 proto_block* block) {
Q
qijun 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
  // insert variable
  auto a = block->add_vars();
  a->set_name(var_name);
  auto a_lt = a->mutable_lod_tensor();
  a_lt->set_data_type(paddle::framework::DataType::FP32);
  for (int i : dim) {
    a_lt->add_dims(i);
  }

  // insert operation
  auto op = block->add_ops();
  op->set_type("feed");

  // set dims attr
  auto dims = op->add_attrs();
  dims->set_name("dims");
  dims->set_type(paddle::framework::AttrType::INTS);
  for (int i : dim) {
    dims->add_ints(i);
  }

  // set col attr
  auto col = op->add_attrs();
  col->set_name("col");
  col->set_type(paddle::framework::AttrType::INT);
  col->set_i(index);

  auto Out = op->add_outputs();
  Out->set_parameter("Out");
  Out->add_arguments(var_name);
}

94 95
void add_fetch_op(string var_name, std::vector<int>& dim, int index,
                  proto_block* block) {
Q
qijun 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
  // insert variable
  auto a = block->add_vars();
  a->set_name(var_name);
  auto a_lt = a->mutable_lod_tensor();
  a_lt->set_data_type(paddle::framework::DataType::FP32);
  for (int i : dim) {
    a_lt->add_dims(i);
  }

  // insert operation
  auto op = block->add_ops();
  op->set_type("fetch");

  // set dims attr
  auto dims = op->add_attrs();
  dims->set_name("dims");
  dims->set_type(paddle::framework::AttrType::INTS);
  for (int i : dim) {
    dims->add_ints(i);
  }

  // set col attr
  auto col = op->add_attrs();
  col->set_name("col");
  col->set_type(paddle::framework::AttrType::INT);
  col->set_i(index);

  auto Out = op->add_inputs();
  Out->set_parameter("Input");
  Out->add_arguments(var_name);
}

Q
qijun 已提交
128 129 130 131 132
std::once_flag set_variable_flag;

template <typename T>
void set_feed_variable(const std::vector<std::vector<T>>& inputs) {
  typedef std::vector<paddle::framework::Tensor> FeedInputs;
Q
qijun 已提交
133
  // Tensors in feed value variable will only be in CPUPlace
Q
qijun 已提交
134 135 136
  Variable* g_feed_value = GetScope()->FindVar("feed_value");
  FeedInputs& feed_inputs = *(g_feed_value->GetMutable<FeedInputs>());
  auto size = inputs.size();
137
  feed_inputs.resize(size);
Q
qijun 已提交
138
  for (size_t i = 0; i < size; i++) {
139 140 141
    T* dst = feed_inputs[i].mutable_data<T>(
        make_ddim({static_cast<int64_t>(inputs[i].size())}), CPUPlace());
    memcpy(dst, inputs[i].data(), inputs[i].size() * sizeof(T));
Q
qijun 已提交
142 143 144
  }
}

Q
qijun 已提交
145 146 147
template <typename T>
std::vector<std::vector<T>> get_fetch_variable() {
  typedef std::vector<paddle::framework::Tensor> FetchOutputs;
Q
qijun 已提交
148
  // Tensors in fetch value variable will only be in CPUPlace
Q
qijun 已提交
149 150 151
  Variable* g_fetch_value = GetScope()->FindVar("fetch_value");
  FetchOutputs& fetch_outputs = *(g_fetch_value->GetMutable<FetchOutputs>());

152
  auto size = fetch_outputs.size();
Q
qijun 已提交
153 154 155 156
  std::vector<std::vector<T>> result;
  result.reserve(size);
  for (size_t i = 0; i < size; i++) {
    std::vector<T> tmp;
157
    tmp.resize(fetch_outputs[i].numel());
Q
qijun 已提交
158 159 160 161 162 163 164
    memcpy(tmp.data(), fetch_outputs[i].data<T>(),
           fetch_outputs[i].numel() * sizeof(T));
    result.push_back(tmp);
  }
  return result;
}

Q
qijun 已提交
165
class ExecutorTesterRandom : public ::testing::Test {
Q
qijun 已提交
166 167 168 169 170 171
 public:
  virtual void SetUp() override {
    auto root_block = pdesc_.add_blocks();
    root_block->set_idx(0);
    root_block->set_parent_idx(-1);

172 173 174
    std::vector<int> dim{2, 3};
    add_gaussian_random_op("a", dim, root_block);
    add_gaussian_random_op("b", dim, root_block);
Q
qijun 已提交
175 176 177 178 179 180

    auto c = root_block->add_vars();
    c->set_name("c");
    auto c_lt = c->mutable_lod_tensor();
    c_lt->set_data_type(paddle::framework::DataType::FP32);

Y
Yang Yang 已提交
181 182 183
    auto op = root_block->add_ops();
    op->set_type("elementwise_add");
    auto X = op->add_inputs();
Q
qijun 已提交
184 185
    X->set_parameter("X");
    X->add_arguments("a");
Y
Yang Yang 已提交
186
    auto Y = op->add_inputs();
Q
qijun 已提交
187 188
    Y->set_parameter("Y");
    Y->add_arguments("b");
Y
Yang Yang 已提交
189 190 191
    auto Out = op->add_outputs();
    Out->set_parameter("Out");
    Out->add_arguments("c");
Q
qijun 已提交
192

193
    add_fetch_op("c", dim, 0, root_block);
Q
qijun 已提交
194
  }
Y
Yang Yang 已提交
195

Q
qijun 已提交
196 197 198 199
 protected:
  ProgramDesc pdesc_;
};

Q
qijun 已提交
200 201 202 203 204 205 206
class ExecutorTesterFeed : public ::testing::Test {
 public:
  virtual void SetUp() override {
    auto root_block = pdesc_.add_blocks();
    root_block->set_idx(0);
    root_block->set_parent_idx(-1);

207 208 209 210
    std::vector<int> dim{6};

    add_feed_op("a", dim, 0, root_block);
    add_feed_op("b", dim, 1, root_block);
Q
qijun 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

    auto c = root_block->add_vars();
    c->set_name("c");
    auto c_lt = c->mutable_lod_tensor();
    c_lt->set_data_type(paddle::framework::DataType::FP32);

    auto op = root_block->add_ops();
    op->set_type("elementwise_add");
    auto X = op->add_inputs();
    X->set_parameter("X");
    X->add_arguments("a");
    auto Y = op->add_inputs();
    Y->set_parameter("Y");
    Y->add_arguments("b");
    auto Out = op->add_outputs();
    Out->set_parameter("Out");
    Out->add_arguments("c");

229
    add_fetch_op("c", dim, 0, root_block);
Q
qijun 已提交
230

231 232
    std::vector<float> vec1 = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0};
    std::vector<float> vec2 = {4.0, 5.0, 6.0, 7.0, 8.0, 9.0};
Q
qijun 已提交
233 234 235 236 237 238 239 240 241
    inputs_.push_back(vec1);
    inputs_.push_back(vec2);
  }

 protected:
  ProgramDesc pdesc_;
  std::vector<std::vector<float>> inputs_;
};

Q
qijun 已提交
242
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
243
TEST_F(ExecutorTesterRandom, CPU) {
Q
qijun 已提交
244
  std::vector<Place> places;
245 246 247 248 249 250 251 252
  CPUPlace cpu_place;
  places.push_back(cpu_place);

  // We have a global Scope and BuddyAllocator, and we must ensure
  // global BuddyAllocator is initialized before global Scope. Thus,
  // global Scope will deconstruct before BuddyAllocator. Otherwise,
  // "pointer being freed was not allocated" error will appear.
  paddle::memory::Used(cpu_place);
Q
qijun 已提交
253

Y
Yang Yang 已提交
254
  Executor* executor = new Executor(places);
255 256 257 258 259 260 261 262
  executor->Run(pdesc_, GetScope());
  std::vector<std::vector<float>> result = get_fetch_variable<float>();
  for (auto& vec : result) {
    for (auto& num : vec) {
      std::cout << num << " ";
    }
    std::cout << std::endl;
  }
Q
qijun 已提交
263 264 265 266 267 268 269 270
  delete executor;
}

TEST_F(ExecutorTesterFeed, CPU) {
  std::vector<Place> places;
  CPUPlace cpu_place;
  places.push_back(cpu_place);

271 272 273 274 275 276
  // We have a global Scope and BuddyAllocator, and we must ensure
  // global BuddyAllocator is initialized before global Scope. Thus,
  // global Scope will deconstruct before BuddyAllocator. Otherwise,
  // "pointer being freed was not allocated" error will appear.
  paddle::memory::Used(cpu_place);

Q
qijun 已提交
277 278 279 280 281
  Executor* executor = new Executor(places);

  // 3 mini-batch
  for (int i = 0; i < 3; i++) {
    // need to set feed variable before Executor::Run
Q
qijun 已提交
282
    std::cout << "start mini-batch " << i << std::endl;
Q
qijun 已提交
283 284
    set_feed_variable<float>(inputs_);
    executor->Run(pdesc_, GetScope());
Q
qijun 已提交
285 286 287 288 289 290 291
    std::vector<std::vector<float>> result = get_fetch_variable<float>();
    for (auto& vec : result) {
      for (auto& num : vec) {
        std::cout << num << " ";
      }
      std::cout << std::endl;
    }
Q
qijun 已提交
292 293
  }

Q
qijun 已提交
294 295
  delete executor;
}
Q
qijun 已提交
296
#else
Q
qijun 已提交
297 298 299 300 301
TEST_F(ExecutorTesterRandom, GPU) {
  std::vector<Place> places;
  GPUPlace gpu_place(0);
  places.push_back(gpu_place);

Q
qijun 已提交
302 303 304 305 306 307 308
  // We have a global Scope and BuddyAllocator, and we must ensure
  // global BuddyAllocator is initialized before global Scope. Thus,
  // global Scope will deconstruct before BuddyAllocator. Otherwise,
  // "pointer being freed was not allocated" error will appear.
  // If paddle is compiled with GPU, both CPU and GPU BuddyAllocator
  // need to be used at first.
  paddle::memory::Used(CPUPlace());
309 310
  paddle::memory::Used(gpu_place);

Q
qijun 已提交
311
  Executor* executor = new Executor(places);
312
  executor->Run(pdesc_, GetScope());
Q
qijun 已提交
313 314 315 316
  delete executor;
}

TEST_F(ExecutorTesterFeed, GPU) {
Q
qijun 已提交
317
  std::vector<Place> places;
Q
qijun 已提交
318 319
  GPUPlace gpu_place(0);
  places.push_back(gpu_place);
Q
qijun 已提交
320 321 322 323 324 325 326
  // We have a global Scope and BuddyAllocator, and we must ensure
  // global BuddyAllocator is initialized before global Scope. Thus,
  // global Scope will deconstruct before BuddyAllocator. Otherwise,
  // "pointer being freed was not allocated" error will appear.
  // If paddle is compiled with GPU, both CPU and GPU BuddyAllocator
  // need to be used at first.
  paddle::memory::Used(CPUPlace());
327 328
  paddle::memory::Used(gpu_place);

Q
qijun 已提交
329
  Executor* executor = new Executor(places);
Q
qijun 已提交
330

Q
qijun 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344
  // 3 mini-batch
  for (int i = 0; i < 3; i++) {
    // need to set feed variable before Executor::Run
    std::cout << "start mini-batch " << i << std::endl;
    set_feed_variable<float>(inputs_);
    executor->Run(pdesc_, GetScope());
    std::vector<std::vector<float>> result = get_fetch_variable<float>();
    for (auto& vec : result) {
      for (auto& num : vec) {
        std::cout << num << " ";
      }
      std::cout << std::endl;
    }
  }
Q
qijun 已提交
345
  delete executor;
Y
Yang Yang 已提交
346
}
Q
qijun 已提交
347
#endif