test_inference_model_io.py 4.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

D
dzhwinter 已提交
17 18
import unittest

M
minqiyang 已提交
19
import six
D
dzhwinter 已提交
20
import numpy as np
21
import paddle.fluid.core as core
22

23 24 25 26 27
import paddle.fluid.executor as executor
import paddle.fluid.layers as layers
import paddle.fluid.optimizer as optimizer
from paddle.fluid.framework import Program, program_guard
from paddle.fluid.io import save_inference_model, load_inference_model
D
dzhwinter 已提交
28
from paddle.fluid.transpiler import memory_optimize
29 30 31 32 33 34 35 36


class TestBook(unittest.TestCase):
    def test_fit_line_inference_model(self):
        MODEL_DIR = "./tmp/inference_model"

        init_program = Program()
        program = Program()
37 38 39 40 41 42 43 44

        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

            cost = layers.square_error_cost(input=y_predict, label=y)
Y
Yu Yang 已提交
45
            avg_cost = layers.mean(cost)
46 47 48

            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
            sgd_optimizer.minimize(avg_cost, init_program)
49 50 51 52 53 54

        place = core.CPUPlace()
        exe = executor.Executor(place)

        exe.run(init_program, feed={}, fetch_list=[])

M
minqiyang 已提交
55
        for i in six.moves.xrange(100):
D
dzhwinter 已提交
56
            tensor_x = np.array(
57
                [[1, 1], [1, 2], [3, 4], [5, 2]]).astype("float32")
D
dzhwinter 已提交
58
            tensor_y = np.array([[-2], [-3], [-7], [-7]]).astype("float32")
59 60 61 62 63 64 65

            exe.run(program,
                    feed={'x': tensor_x,
                          'y': tensor_y},
                    fetch_list=[avg_cost])

        save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, program)
D
dzhwinter 已提交
66 67 68 69
        expected = exe.run(program,
                           feed={'x': tensor_x,
                                 'y': tensor_y},
                           fetch_list=[avg_cost])[0]
70

M
minqiyang 已提交
71
        six.moves.reload_module(executor)  # reload to build a new scope
72 73 74 75 76 77 78 79 80 81
        exe = executor.Executor(place)

        [infer_prog, feed_var_names, fetch_vars] = load_inference_model(
            MODEL_DIR, exe)

        outs = exe.run(
            infer_prog,
            feed={feed_var_names[0]: tensor_x,
                  feed_var_names[1]: tensor_y},
            fetch_list=fetch_vars)
D
dzhwinter 已提交
82
        actual = outs[0]
83 84 85

        self.assertEqual(feed_var_names, ["x", "y"])
        self.assertEqual(len(fetch_vars), 1)
86 87
        print("fetch %s" % str(fetch_vars[0]))
        self.assertTrue("scale" in str(fetch_vars[0]))
88 89 90
        self.assertEqual(expected, actual)


D
dzhwinter 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
class TestSaveInferenceModel(unittest.TestCase):
    def test_save_inference_model(self):
        MODEL_DIR = "./tmp/inference_model2"
        init_program = Program()
        program = Program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

            cost = layers.square_error_cost(input=y_predict, label=y)
            avg_cost = layers.mean(cost)

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])

        memory_optimize(program, print_log=True)
D
dzhwinter 已提交
112
        self.assertEqual(program._is_mem_optimized, True)
D
dzhwinter 已提交
113 114
        # will print warning message
        save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, program)
D
dzhwinter 已提交
115 116


117 118
if __name__ == '__main__':
    unittest.main()