tester_helper.h 16.5 KB
Newer Older
L
luotao1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <gtest/gtest.h>
Y
Yan Chunwei 已提交
18

L
luotao1 已提交
19
#include <algorithm>
L
luotao1 已提交
20
#include <memory>
T
Tao Luo 已提交
21
#include <string>
L
luotao1 已提交
22
#include <thread>  // NOLINT
L
luotao1 已提交
23
#include <unordered_map>
L
luotao1 已提交
24
#include <vector>
Y
Yiqun Liu 已提交
25 26 27
#ifdef WITH_GPERFTOOLS
#include <gperftools/profiler.h>
#endif
L
luotao1 已提交
28
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
29
#include "paddle/fluid/framework/scope.h"
L
luotao1 已提交
30 31 32
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
33
#include "paddle/fluid/inference/api/helper.h"
Y
Yan Chunwei 已提交
34
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
35
#include "paddle/fluid/inference/tests/api/config_printer.h"
T
Tao Luo 已提交
36
#include "paddle/fluid/inference/tests/test_helper.h"
N
nhzlx 已提交
37
#include "paddle/fluid/inference/utils/benchmark.h"
L
luotao1 已提交
38 39
#include "paddle/fluid/platform/profiler.h"

N
nhzlx 已提交
40
DEFINE_string(model_name, "", "model name");
L
luotao1 已提交
41 42
DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data file");
T
Tao Luo 已提交
43
DEFINE_string(refer_result, "", "reference result for comparison");
L
luotao1 已提交
44 45 46 47
DEFINE_int32(batch_size, 1, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
T
Tao Luo 已提交
48 49
DEFINE_bool(use_analysis, true,
            "Running the inference program in analysis mode.");
N
nhzlx 已提交
50 51
DEFINE_bool(record_benchmark, false,
            "Record benchmark after profiling the model");
L
luotao1 已提交
52
DEFINE_double(accuracy, 1e-3, "Result Accuracy.");
L
luotao1 已提交
53

54
DECLARE_bool(profile);
L
luotao1 已提交
55
DECLARE_int32(paddle_num_threads);
56

L
luotao1 已提交
57 58 59
namespace paddle {
namespace inference {

60
void PrintConfig(const PaddlePredictor::Config *config, bool use_analysis) {
61
  const auto *analysis_config =
62
      reinterpret_cast<const AnalysisConfig *>(config);
63
  if (use_analysis) {
64
    LOG(INFO) << *analysis_config;
65 66
    return;
  }
67
  LOG(INFO) << analysis_config->ToNativeConfig();
68
}
Y
Yan Chunwei 已提交
69

L
luotao1 已提交
70
void CompareResult(const std::vector<PaddleTensor> &outputs,
T
tensor-tang 已提交
71
                   const std::vector<PaddleTensor> &ref_outputs) {
T
Tao Luo 已提交
72
  EXPECT_GT(outputs.size(), 0UL);
T
tensor-tang 已提交
73
  EXPECT_EQ(outputs.size(), ref_outputs.size());
L
luotao1 已提交
74 75
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
T
tensor-tang 已提交
76
    auto &ref_out = ref_outputs[i];
77 78
    size_t size = VecReduceToInt(out.shape);
    size_t ref_size = VecReduceToInt(ref_out.shape);
79
    EXPECT_GT(size, 0UL);
T
tensor-tang 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    EXPECT_EQ(size, ref_size);
    EXPECT_EQ(out.dtype, ref_out.dtype);
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = static_cast<float *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
Y
Yan Chunwei 已提交
95
          CHECK_LE(std::abs(pdata_ref[j] - pdata[j]), FLAGS_accuracy);
T
tensor-tang 已提交
96 97 98
        }
        break;
      }
99 100 101 102 103 104 105 106
      case PaddleDType::INT32: {
        int32_t *pdata = static_cast<int32_t *>(out.data.data());
        int32_t *pdata_ref = static_cast<int32_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
L
luotao1 已提交
107 108 109 110
    }
  }
}

111
std::unique_ptr<PaddlePredictor> CreateTestPredictor(
112
    const PaddlePredictor::Config *config, bool use_analysis = true) {
113
  const auto *analysis_config =
114
      reinterpret_cast<const AnalysisConfig *>(config);
T
Tao Luo 已提交
115
  if (use_analysis) {
116
    return CreatePaddlePredictor<AnalysisConfig>(*analysis_config);
T
Tao Luo 已提交
117
  }
118 119
  auto native_config = analysis_config->ToNativeConfig();
  return CreatePaddlePredictor<NativeConfig>(native_config);
T
Tao Luo 已提交
120 121
}

122
size_t GetSize(const PaddleTensor &out) { return VecReduceToInt(out.shape); }
T
Tao Luo 已提交
123

124
std::unordered_map<std::string, int> GetFuseStatis(PaddlePredictor *predictor,
T
Tao Luo 已提交
125
                                                   int *num_ops) {
126
  std::unordered_map<std::string, int> res;
127
  auto *analysis_predictor = static_cast<AnalysisPredictor *>(predictor);
128 129 130 131 132 133
  auto *fusion_status =
      analysis_predictor->analysis_argument().fusion_statis_ptr();
  if (!fusion_status) {
    return res;
  }
  for (auto &item : *fusion_status) {
T
Tao Luo 已提交
134 135 136 137
    LOG(INFO) << "fused " << item.first << " " << item.second;
  }
  int num = 0;
  for (auto &node :
138 139
       analysis_predictor->analysis_argument().main_graph().Nodes()) {
    if (node->IsOp()) {
T
Tao Luo 已提交
140 141 142 143
      ++num;
    }
  }
  *num_ops = num;
144
  return *fusion_status;
T
Tao Luo 已提交
145 146
}

T
Tao Luo 已提交
147
void SetFakeImageInput(std::vector<std::vector<PaddleTensor>> *inputs,
148 149
                       const std::string &dirname, bool is_combined = true,
                       std::string model_filename = "model",
T
tensor-tang 已提交
150
                       std::string params_filename = "params",
N
nhzlx 已提交
151 152
                       const std::vector<std::string> *feed_names = nullptr,
                       const int continuous_inuput_index = 0) {
T
Tao Luo 已提交
153 154
  // Set fake_image_data
  PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data.");
155 156 157 158 159 160 161 162 163 164 165
  std::vector<std::vector<int64_t>> feed_target_shapes = GetFeedTargetShapes(
      dirname, is_combined, model_filename, params_filename);
  std::ostringstream os;
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    os << "feed target " << i << ": {" << feed_target_shapes[i][0];
    for (size_t j = 1; j < feed_target_shapes[i].size(); ++j) {
      os << ", " << feed_target_shapes[i][j];
    }
    os << "}\n";
  }
  LOG(INFO) << os.str();
T
tensor-tang 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
  if (feed_names) {
    PADDLE_ENFORCE_EQ(feed_names->size(), feed_target_shapes.size());
  }
  std::vector<PaddleTensor> input_slots(feed_target_shapes.size());
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    const auto &feed_shape = feed_target_shapes[i];
    auto &input = input_slots[i];
    std::vector<int> shape({FLAGS_batch_size});
    for (size_t s = 1; s < feed_shape.size(); ++s) {
      shape.push_back(static_cast<int>(feed_shape[s]));
    }
    if (feed_names) {
      input.name = (*feed_names)[i];
    }
    input.shape = shape;
    input.dtype = PaddleDType::FLOAT32;
    size_t len = std::accumulate(shape.begin(), shape.end(), 1,
                                 [](int a, int b) { return a * b; });
    input.data.Resize(len * sizeof(float));
    input.lod.assign({{0, static_cast<size_t>(FLAGS_batch_size)}});
    float *input_data = static_cast<float *>(input.data.data());
    // fill input data, for profile easily, do not use random data here.
    for (size_t j = 0; j < len; ++j) {
N
nhzlx 已提交
189 190
      *(input_data + j) =
          static_cast<float>((j + continuous_inuput_index) % len) / len;
T
tensor-tang 已提交
191
    }
T
Tao Luo 已提交
192 193 194 195
  }
  (*inputs).emplace_back(input_slots);
}

196 197 198 199 200 201 202 203 204 205 206 207
void GetInputPerBatch(const std::vector<std::vector<int64_t>> &in,
                      std::vector<std::vector<int64_t>> *out,
                      std::vector<size_t> *lod, size_t batch_iter,
                      size_t batch_end) {
  lod->clear();
  lod->push_back(0);
  for (auto it = in.begin() + batch_iter; it < in.begin() + batch_end; it++) {
    out->push_back(*it);
    lod->push_back(lod->back() + (*it).size());  // calculate lod
  }
}

L
luotao1 已提交
208
void TestOneThreadPrediction(
209
    const PaddlePredictor::Config *config,
210
    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
211
    std::vector<PaddleTensor> *outputs, bool use_analysis = true) {
L
luotao1 已提交
212 213
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
214
  auto predictor = CreateTestPredictor(config, use_analysis);
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

  // warmup run
  LOG(INFO) << "Warm up run...";
  {
    Timer warmup_timer;
    warmup_timer.tic();
    predictor->Run(inputs[0], outputs, batch_size);
    PrintTime(batch_size, 1, 1, 0, warmup_timer.toc(), 1);
    if (FLAGS_profile) {
      paddle::platform::ResetProfiler();
    }
  }

  LOG(INFO) << "Run " << num_times << " times...";
  {
    Timer run_timer;
    run_timer.tic();
Y
Yiqun Liu 已提交
232 233 234
#ifdef WITH_GPERFTOOLS
    ProfilerStart("paddle_inference.prof");
#endif
235 236 237 238
    for (int i = 0; i < num_times; i++) {
      for (size_t j = 0; j < inputs.size(); j++) {
        predictor->Run(inputs[j], outputs, batch_size);
      }
L
luotao1 已提交
239
    }
Y
Yiqun Liu 已提交
240 241 242
#ifdef WITH_GPERFTOOLS
    ProfilerStop();
#endif
N
nhzlx 已提交
243

Y
Yiqun Liu 已提交
244
    double latency = run_timer.toc() / (num_times > 1 ? num_times : 1);
N
nhzlx 已提交
245 246 247 248 249 250 251 252
    PrintTime(batch_size, num_times, 1, 0, latency, inputs.size());
    if (FLAGS_record_benchmark) {
      Benchmark benchmark;
      benchmark.SetName(FLAGS_model_name);
      benchmark.SetBatchSize(batch_size);
      benchmark.SetLatency(latency);
      benchmark.PersistToFile("benchmark_record.txt");
    }
L
luotao1 已提交
253 254 255 256
  }
}

void TestMultiThreadPrediction(
257
    const PaddlePredictor::Config *config,
258
    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
259 260
    std::vector<PaddleTensor> *outputs, int num_threads,
    bool use_analysis = true) {
L
luotao1 已提交
261 262 263
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  std::vector<std::thread> threads;
L
luotao1 已提交
264 265 266 267 268
  std::vector<std::unique_ptr<PaddlePredictor>> predictors;
  predictors.emplace_back(CreateTestPredictor(config, use_analysis));
  for (int tid = 1; tid < num_threads; tid++) {
    predictors.emplace_back(predictors.front()->Clone());
  }
269 270

  size_t total_time{0};
L
luotao1 已提交
271 272 273 274 275
  for (int tid = 0; tid < num_threads; ++tid) {
    threads.emplace_back([&, tid]() {
      // Each thread should have local inputs and outputs.
      // The inputs of each thread are all the same.
      std::vector<PaddleTensor> outputs_tid;
L
luotao1 已提交
276
      auto &predictor = predictors[tid];
L
luotao1 已提交
277 278 279
#ifdef PADDLE_WITH_MKLDNN
      if (use_analysis) {
        static_cast<AnalysisPredictor *>(predictor.get())
L
luotao1 已提交
280
            ->SetMkldnnThreadID(static_cast<int>(tid) + 1);
L
luotao1 已提交
281 282
      }
#endif
T
Tao Luo 已提交
283 284 285 286 287 288 289 290 291 292

      // warmup run
      LOG(INFO) << "Running thread " << tid << ", warm up run...";
      {
        Timer warmup_timer;
        warmup_timer.tic();
        predictor->Run(inputs[0], outputs, batch_size);
        PrintTime(batch_size, 1, num_threads, tid, warmup_timer.toc(), 1);
        if (FLAGS_profile) {
          paddle::platform::ResetProfiler();
L
luotao1 已提交
293 294
        }
      }
295

T
Tao Luo 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
      LOG(INFO) << "Thread " << tid << " run " << num_times << " times...";
      {
        Timer timer;
        timer.tic();
        for (int i = 0; i < num_times; i++) {
          for (const auto &input : inputs) {
            ASSERT_TRUE(predictor->Run(input, &outputs_tid));
          }
        }

        auto time = timer.toc();
        total_time += time;
        PrintTime(batch_size, num_times, num_threads, tid, time / num_times,
                  inputs.size());
      }
L
luotao1 已提交
311 312 313 314 315 316 317
    });
  }
  for (int i = 0; i < num_threads; ++i) {
    threads[i].join();
  }
}

318
void TestPrediction(const PaddlePredictor::Config *config,
319
                    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
320 321
                    std::vector<PaddleTensor> *outputs, int num_threads,
                    bool use_analysis = FLAGS_use_analysis) {
322
  PrintConfig(config, use_analysis);
L
luotao1 已提交
323
  if (num_threads == 1) {
T
Tao Luo 已提交
324
    TestOneThreadPrediction(config, inputs, outputs, use_analysis);
L
luotao1 已提交
325
  } else {
T
Tao Luo 已提交
326 327
    TestMultiThreadPrediction(config, inputs, outputs, num_threads,
                              use_analysis);
L
luotao1 已提交
328 329 330
  }
}

L
luotao1 已提交
331 332 333 334 335 336 337 338 339
void CompareDeterministic(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  auto predictor = CreateTestPredictor(config, FLAGS_use_analysis);

  std::vector<PaddleTensor> warmup_outputs, outputs;
  // run num_times to Compare Deterministic Result.
340 341 342 343
  for (size_t j = 0; j < inputs.size(); j++) {
    // warmup run
    predictor->Run(inputs[j], &warmup_outputs, batch_size);
    for (int i = 0; i < num_times; i++) {
L
luotao1 已提交
344 345 346 347 348 349
      predictor->Run(inputs[j], &outputs, batch_size);
      CompareResult(outputs, warmup_outputs);
    }
  }
}

T
Tao Luo 已提交
350
void CompareNativeAndAnalysis(
351
    const PaddlePredictor::Config *config,
352
    const std::vector<std::vector<PaddleTensor>> &inputs) {
353
  PrintConfig(config, true);
T
Tao Luo 已提交
354
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
355
  TestOneThreadPrediction(config, inputs, &native_outputs, false);
T
Tao Luo 已提交
356 357 358 359
  TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
  CompareResult(analysis_outputs, native_outputs);
}

N
nhzlx 已提交
360 361 362 363 364 365 366 367 368 369
void CompareNativeAndAnalysis(
    PaddlePredictor *native_pred, PaddlePredictor *analysis_pred,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
  native_pred->Run(inputs[0], &native_outputs, batch_size);
  analysis_pred->Run(inputs[0], &analysis_outputs, batch_size);
  CompareResult(analysis_outputs, native_outputs);
}

L
luotao1 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
template <typename T>
std::string LoDTensorSummary(const framework::LoDTensor &tensor) {
  std::stringstream ss;
  ss << "\n---- tensor ---" << '\n';
  ss << "lod: [";
  for (const auto &level : tensor.lod()) {
    ss << "[ ";
    for (auto i : level) {
      ss << i << ", ";
    }
    ss << "]";
  }
  ss << "]\n";

  ss << "shape: [";
  int size = 1;
  for (int i = 0; i < tensor.dims().size(); i++) {
    int dim = tensor.dims()[i];
    ss << dim << ", ";
    size *= dim;
  }
  ss << "]\n";

  ss << "data: ";
  for (int i = 0; i < std::min(20, size); i++) {
    ss << tensor.data<T>()[i] << " ";
  }
  ss << "\n";

  return ss.str();
}

static bool CompareLoD(const framework::LoD &a, const framework::LoD &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("lod size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    auto &al = a[i];
    auto &bl = b[i];
    if (al.size() != bl.size()) {
      LOG(ERROR) << string::Sprintf("level size %d != %d", al.size(),
                                    bl.size());
      return false;
    }
  }
  return true;
}

static bool CompareShape(const std::vector<int64_t> &a,
                         const std::vector<int64_t> &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("shape size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    if (a[i] != b[i]) {
      LOG(ERROR) << string::Sprintf("shape %d-th element not match %d != %d", i,
                                    a[i], b[i]);
      return false;
    }
  }
  return true;
}

static bool CompareTensorData(const framework::LoDTensor &a,
                              const framework::LoDTensor &b) {
  auto a_shape = framework::vectorize(a.dims());
  auto b_shape = framework::vectorize(b.dims());
  size_t a_size = std::accumulate(a_shape.begin(), a_shape.end(), 1,
                                  [](int a, int b) { return a * b; });
  size_t b_size = std::accumulate(b_shape.begin(), b_shape.end(), 1,
                                  [](int a, int b) { return a * b; });
  if (a_size != b_size) {
    LOG(ERROR) << string::Sprintf("tensor data size not match, %d != %d",
                                  a_size, b_size);
  }

  for (size_t i = 0; i < a_size; i++) {
Y
Yu Yang 已提交
451
    if (a.type() == framework::proto::VarType::FP32) {
L
luotao1 已提交
452 453 454 455 456 457 458 459
      const auto *a_data = a.data<float>();
      const auto *b_data = b.data<float>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
Y
Yu Yang 已提交
460
    } else if (a.type() == framework::proto::VarType::INT64) {
L
luotao1 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
      const auto *a_data = a.data<int64_t>();
      const auto *b_data = b.data<int64_t>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
    }
  }

  return true;
}

static bool CompareTensor(const framework::LoDTensor &a,
                          const framework::LoDTensor &b) {
  if (!CompareLoD(a.lod(), b.lod())) {
    return false;
  }
  if (!CompareShape(framework::vectorize(a.dims()),
                    framework::vectorize(b.dims()))) {
    return false;
  }

  if (!CompareTensorData(a, b)) {
    return false;
  }

  return true;
}

L
luotao1 已提交
492 493
}  // namespace inference
}  // namespace paddle