reduce_op.cc 6.9 KB
Newer Older
G
guosheng 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
guosheng 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
guosheng 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
guosheng 已提交
14 15

#include "paddle/operators/reduce_op.h"
G
guosheng 已提交
16
#include "paddle/operators/net_op.h"
G
guosheng 已提交
17 18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

using framework::Tensor;

class ReduceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

27
  void InferShape(framework::InferShapeContext *ctx) const override {
28 29 30 31 32
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of ReduceOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of ReduceOp should not be null.");
    auto x_dims = ctx->GetInputDim("X");
G
guosheng 已提交
33
    auto x_rank = x_dims.size();
G
guosheng 已提交
34
    PADDLE_ENFORCE_LE(x_rank, 6, "Tensors with rank at most 6 are supported.");
35
    int dim = ctx->Attrs().Get<int>("dim");
G
guosheng 已提交
36 37 38
    if (dim < 0) dim = x_rank + dim;
    PADDLE_ENFORCE_LT(
        dim, x_rank,
G
guosheng 已提交
39
        "The dim should be in the range [-rank(input), rank(input)).");
40 41 42
    bool reduce_all = ctx->Attrs().Get<bool>("reduce_all");
    if (reduce_all) {
      ctx->SetOutputDim("Out", {1});
G
guosheng 已提交
43
    } else {
44 45 46 47 48 49 50 51 52 53 54 55 56
      bool keep_dim = ctx->Attrs().Get<bool>("keep_dim");
      auto dims_vector = vectorize(x_dims);
      if (keep_dim || x_rank == 1) {
        dims_vector[dim] = 1;
      } else {
        dims_vector.erase(dims_vector.begin() + dim);
      }
      auto out_dims = framework::make_ddim(dims_vector);
      ctx->SetOutputDim("Out", out_dims);
      if (dim != 0) {
        // Only pass LoD when not reducing on the first dim.
        ctx->ShareLoD("X", /*->*/ "Out");
      }
57
    }
G
guosheng 已提交
58 59 60 61 62 63 64
  }
};

class ReduceGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

65
  void InferShape(framework::InferShapeContext *ctx) const override {
66 67 68 69
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null.");
    auto x_dims = ctx->GetInputDim("X");
G
guosheng 已提交
70
    auto x_rank = x_dims.size();
G
guosheng 已提交
71
    PADDLE_ENFORCE_LE(x_rank, 6, "Tensors with rank at most 6 are supported.");
72
    int dim = ctx->Attrs().Get<int>("dim");
G
guosheng 已提交
73 74 75
    if (dim < 0) dim = x_rank + dim;
    PADDLE_ENFORCE_LT(
        dim, x_rank,
G
guosheng 已提交
76
        "The dim should be in the range [-rank(input), rank(input)).");
77 78 79 80
    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
G
guosheng 已提交
81 82 83
  }
};

G
guosheng 已提交
84
class ReduceOpMaker : public framework::OpProtoAndCheckerMaker {
G
guosheng 已提交
85
 public:
86
  ReduceOpMaker(OpProto *proto, OpAttrChecker *op_checker)
G
guosheng 已提交
87
      : OpProtoAndCheckerMaker(proto, op_checker) {
K
kexinzhao 已提交
88 89 90
    AddInput("X",
             "(Tensor) The input tensor. Tensors with rank at most 6 are "
             "supported.");
G
guosheng 已提交
91
    AddOutput("Out", "(Tensor) The result tensor.");
92 93
    AddAttr<int>(
        "dim",
K
kexinzhao 已提交
94
        "(int, default 0) The dimension to reduce. "
95 96
        "Must be in the range [-rank(input), rank(input)). "
        "If `dim < 0`, the dim to reduce is `rank + dim`. "
K
kexinzhao 已提交
97
        "Note that reducing on the first dim will make the LoD info lost.")
98
        .SetDefault(0);
G
guosheng 已提交
99 100 101 102
    AddAttr<bool>("keep_dim",
                  "(bool, default false) "
                  "If true, retain the reduced dimension with length 1.")
        .SetDefault(false);
103 104 105 106
    AddAttr<bool>("reduce_all",
                  "(bool, default false) "
                  "If true, output a scalar reduced along all dimensions.")
        .SetDefault(false);
G
guosheng 已提交
107
    comment_ = R"DOC(
K
kexinzhao 已提交
108 109 110 111
{ReduceOp} Operator.

This operator computes the {reduce} of input tensor along the given dimension. 
The result tensor has 1 fewer dimension than the input unless keep_dim is true.
112
If reduce_all is true, just reduce along all dimensions and output a scalar.
K
kexinzhao 已提交
113

G
guosheng 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
)DOC";
    AddComment(comment_);
  }

 protected:
  std::string comment_;

  void Replace(std::string &src, std::string from, std::string to) {
    std::size_t len_from = std::strlen(from.c_str());
    std::size_t len_to = std::strlen(to.c_str());
    for (std::size_t pos = src.find(from); pos != std::string::npos;
         pos = src.find(from, pos + len_to)) {
      src.replace(pos, len_from, to);
    }
  }

  void SetComment(std::string name, std::string op) {
    Replace(comment_, "{ReduceOP}", name);
    Replace(comment_, "{reduce}", op);
G
guosheng 已提交
133 134 135
  }
};

G
guosheng 已提交
136 137
class ReduceSumOpMaker : public ReduceOpMaker {
 public:
138
  ReduceSumOpMaker(OpProto *proto, OpAttrChecker *op_checker)
G
guosheng 已提交
139 140 141 142 143 144 145
      : ReduceOpMaker(proto, op_checker) {
    SetComment("ReduceSum", "sum");
    AddComment(comment_);
  }
};

class ReduceMeanOpMaker : public ReduceOpMaker {
G
guosheng 已提交
146
 public:
147
  ReduceMeanOpMaker(OpProto *proto, OpAttrChecker *op_checker)
G
guosheng 已提交
148 149 150
      : ReduceOpMaker(proto, op_checker) {
    SetComment("ReduceMean", "mean");
    AddComment(comment_);
G
guosheng 已提交
151 152 153
  }
};

G
guosheng 已提交
154
class ReduceMaxOpMaker : public ReduceOpMaker {
G
guosheng 已提交
155
 public:
156
  ReduceMaxOpMaker(OpProto *proto, OpAttrChecker *op_checker)
G
guosheng 已提交
157 158 159
      : ReduceOpMaker(proto, op_checker) {
    SetComment("ReduceMax", "max");
    AddComment(comment_);
G
guosheng 已提交
160 161 162
  }
};

G
guosheng 已提交
163
class ReduceMinOpMaker : public ReduceOpMaker {
G
guosheng 已提交
164
 public:
165
  ReduceMinOpMaker(OpProto *proto, OpAttrChecker *op_checker)
G
guosheng 已提交
166 167 168
      : ReduceOpMaker(proto, op_checker) {
    SetComment("ReduceMin", "min");
    AddComment(comment_);
G
guosheng 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP(reduce_sum, ops::ReduceOp, ops::ReduceSumOpMaker, reduce_sum_grad,
            ops::ReduceGradOp);

REGISTER_OP(reduce_mean, ops::ReduceOp, ops::ReduceMeanOpMaker,
            reduce_mean_grad, ops::ReduceGradOp);

REGISTER_OP(reduce_max, ops::ReduceOp, ops::ReduceMaxOpMaker, reduce_max_grad,
            ops::ReduceGradOp);

L
Luo Tao 已提交
186
REGISTER_OP(reduce_min, ops::ReduceOp, ops::ReduceMinOpMaker, reduce_min_grad,
G
guosheng 已提交
187
            ops::ReduceGradOp);
G
guosheng 已提交
188

Q
QI JUN 已提交
189 190 191 192 193 194 195 196
#define REGISTER_REDUCE_CPU_KERNEL(reduce_type, functor, grad_functor)         \
  REGISTER_OP_CPU_KERNEL(reduce_type,                                          \
                         ops::ReduceKernel<paddle::platform::CPUDeviceContext, \
                                           float, ops::functor>);              \
  REGISTER_OP_CPU_KERNEL(                                                      \
      reduce_type##_grad,                                                      \
      ops::ReduceGradKernel<paddle::platform::CPUDeviceContext, float,         \
                            ops::grad_functor>);
197 198

FOR_EACH_KERNEL_FUNCTOR(REGISTER_REDUCE_CPU_KERNEL);