elementwise_op_function.h 49.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
16

17
#include <glog/logging.h>
18

19
#include <algorithm>
20
#include <functional>  // for multiplies
D
dzhwinter 已提交
21
#include <iterator>
22
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
27
#include "paddle/fluid/memory/malloc.h"
28
#include "paddle/fluid/operators/elementwise/elementwise_functor.h"
29
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
Y
Yi Wang 已提交
30
#include "paddle/fluid/platform/transform.h"
31

32
#include "paddle/pten/api/lib/utils/tensor_utils.h"
33
#include "paddle/pten/kernels/cpu/elementwise.h"
34

35
#if defined(__NVCC__) || defined(__HIPCC__)
C
chengduoZH 已提交
36
#ifdef __NVCC__
37
#include <cuda.h>
38 39 40
#elif defined(__HIPCC__)
#include <hip/hip_runtime.h>
#endif
C
chengduoZH 已提交
41
#include <thrust/iterator/iterator_adaptor.h>
42

43
#include "paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h"
44
#include "paddle/fluid/operators/reduce_ops/reduce_op.cu.h"
45 46
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
47

C
chengduoZH 已提交
48 49
#endif

Y
Yi Wang 已提交
50
#include "paddle/fluid/operators/math/math_function.h"
Y
Yu Yang 已提交
51
#include "paddle/fluid/platform/for_range.h"
52

53 54 55 56
#define DIVUP(x, y) (((x) + (y)-1) / (y))

#define ROUNDUP(x, y) (DIVUP((x), (y)) * (y))

57 58 59
namespace paddle {
namespace operators {

60
/*
61 62 63 64 65 66 67
*  Pack input and output tensors into respective vectors with
*  consideration of varible X`s class type.
*  Input variable X is supported to be whether LoDTensor or
*  SelectedRows class type in this package function, once X
*  was SelectedRows type, a valid pointer x_for_selectedrows
*  is excepted to be passed in from op kernel for acquisition
*  of the valid address of LoDTensor created ahead in the function.
68
*/
69 70 71
template <typename OutT>
int PackTensorsIntoVector(const framework::ExecutionContext &ctx,
                          std::vector<const framework::Tensor *> *ins,
72 73
                          std::vector<framework::Tensor *> *outs,
                          framework::Tensor *x_for_selectedrows = nullptr) {
74
  int axis = -1;
75 76 77 78 79
  auto x_var = ctx.InputVar("X");
  PADDLE_ENFORCE_NOT_NULL(
      x_var, platform::errors::InvalidArgument(
                 "Unable to get input Variable X, Variable name is %s.\n",
                 ctx.InputName("X")));
80
  auto *y = ctx.Input<framework::LoDTensor>("Y");
81 82 83 84 85 86
  framework::Tensor *z;

  if (x_var->IsType<framework::LoDTensor>()) {
    auto *x = ctx.Input<framework::LoDTensor>("X");
    z = ctx.Output<framework::LoDTensor>("Out");
    ins->emplace_back(x);
87
  } else if (x_var->IsType<pten::SelectedRows>()) {
88 89 90 91 92 93 94 95 96 97 98
    PADDLE_ENFORCE_EQ(y->dims().size() == 1 && y->dims()[0] == 1, true,
                      platform::errors::InvalidArgument(
                          "For elementwise_op, if X is Sparse, Y must be "
                          "scalar. But reveived the size of Y = %d.",
                          y->dims().size()));
    PADDLE_ENFORCE_NOT_NULL(
        x_for_selectedrows,
        platform::errors::InvalidArgument(
            "The parameter x_for_selectedrows is excepted to "
            "be valid, once input varible X`s class type is "
            "SelectedRows.\n"));
99 100
    auto &x_sele = x_var->Get<pten::SelectedRows>();
    auto out_sele = ctx.Output<pten::SelectedRows>("Out");
101 102 103 104 105 106
    *x_for_selectedrows = x_sele.value();
    out_sele->set_rows(x_sele.rows());
    out_sele->set_height(x_sele.height());
    out_sele->mutable_value()->Resize(x_sele.value().dims());
    out_sele->mutable_value()->mutable_data(ctx.GetPlace(),
                                            x_for_selectedrows->type());
107
    z = ctx.Output<pten::SelectedRows>("Out")->mutable_value();
108 109 110 111 112 113 114
    ins->emplace_back(x_for_selectedrows);
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "X's type[%s] is not supported by elementwise_op. X's type should be "
        "LoDTensor or SelectedRows.",
        framework::ToTypeName(x_var->Type())));
  }
115
  z->mutable_data<OutT>(ctx.GetPlace());
116 117 118 119
  outs->emplace_back(z);

  if (y != nullptr) {
    ins->emplace_back(y);
120
    axis = ctx.HasAttr("axis") ? ctx.Attr<int>("axis") : -1;
121
  }
122
  return axis;
123 124
}

125 126 127 128 129
inline void GetBroadcastDimsArrays(const framework::DDim &x_dims,
                                   const framework::DDim &y_dims,
                                   int *x_dims_array, int *y_dims_array,
                                   int *out_dims_array, const int max_dim,
                                   const int axis) {
130 131 132
  pten::funcs::GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array,
                                      y_dims_array, out_dims_array, max_dim,
                                      axis);
133
}
134

135
inline framework::DDim trim_trailing_singular_dims(
136
    const framework::DDim &dims) {
137
  return pten::funcs::trim_trailing_singular_dims(dims);
138 139
}

F
Feiyu Chan 已提交
140 141
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
          typename Tout = T>
142 143 144 145 146
void ElemwiseGradCompute(const framework::ExecutionContext &ctx,
                         const framework::Tensor &x, const framework::Tensor &y,
                         const framework::Tensor &out,
                         const framework::Tensor &dout, int axis,
                         framework::Tensor *dx, framework::Tensor *dy,
Y
Yu Yang 已提交
147
                         DX_OP dx_op, DY_OP dy_op) {
148 149
  const framework::DDim &x_dim = x.dims();
  const framework::DDim &y_dim = y.dims();
150
  const auto &dev_ctx = ctx.template device_context<DeviceContext>();
Y
Yu Yang 已提交
151
  if (x.dims() == y.dims()) {
152 153 154
    pten::funcs::ElemwiseGradComputeNoBroadcast<DeviceContext, T, DX_OP, DY_OP,
                                                Tout>(
        dev_ctx, x_dim, y_dim, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
155
  } else {
156 157
    pten::ElemwiseGradComputeWithBroadcast<T, DX_OP, DY_OP, Tout>(
        dev_ctx, x_dim, y_dim, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
158 159 160
  }
}

161 162 163 164
// It is a common implementation to compute binary calculation with the support
// of broadcast, supporting both CPU and GPU.
// - CPU implementation cannot support the case when x needs broadcast, thus
//   this function need to be called with XxxFunctor and XxxInverseFunctor,
165
//   like AddFunctor and InverseAddFunctor.
166 167 168 169
// - GPU implementation supports all the broadcast cases, thus there is no need
//   to define and call with XxxInverseFunctor.
// TODO(liuyiqun): optimize the CPU implementation to support all broadcast
// cases and avoid the need of XxxInverseFunctor.
170 171
template <typename Functor, typename DeviceContext, typename T,
          typename OutType = T>
172 173 174 175
void ElementwiseComputeEx(const framework::ExecutionContext &ctx,
                          const framework::Tensor *x,
                          const framework::Tensor *y, int axis, Functor func,
                          framework::Tensor *z) {
176
  z->mutable_data<OutType>(ctx.GetPlace());
177 178 179 180
  if (platform::is_gpu_place(ctx.GetPlace())) {
#if defined(__NVCC__) || defined(__HIPCC__)
    const auto &dev_ctx =
        ctx.template device_context<platform::CUDADeviceContext>();
181 182 183
    pten::ElementwiseCompute<Functor, T, OutType>(dev_ctx, *x, *y, axis, func,
                                                  z);

184 185 186
#endif
    return;
  }
187 188
  const auto &dev_ctx =
      ctx.template device_context<platform::CPUDeviceContext>();
189
  pten::ElementwiseCompute<Functor, T, OutType>(dev_ctx, *x, *y, axis, func, z);
F
fengjiayi 已提交
190 191
}

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
// FusedElemwiseAndAct
// --- forward
template <typename T, typename CompoundFunctor, bool KeepIntermediateOut>
struct FusedElemwiseAndActNoBroadcast {
  HOSTDEVICE void operator()(size_t i) {
    T y_val = y_[i];
    T x_val = x_[i];
    if (KeepIntermediateOut) {
      T intermeidiate_out = compound_functor_.GetIntermediateOut(x_val, y_val);
      intermediate_out_[i] = intermeidiate_out;
      out_[i] =
          compound_functor_.GetOutUseIntermediateOut(x_val, intermeidiate_out);
    } else {
      out_[i] = compound_functor_.GetOut(x_val, y_val);
    }
  }

  const T *x_;
  const T *y_;
  CompoundFunctor compound_functor_;
  T *out_;
  T *intermediate_out_;
};

// FusedElemwiseAndActBroadcast1:
// In this case, X and Y can be reshaped to a matrix.
// For example shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5) and axis = -1 or 2,
// X can be reshaped to (6, 20) and Y can be reshaped to (1, 20)
template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActBroadcast1CPU(const T *x, const T *y,
                                             CompoundFunctor compound_functor,
                                             int h, int w, T *out,
                                             T *intermediate_out) {
  for (int i = 0; i < h; ++i) {
    for (int j = 0; j < w; ++j) {
      int offset = i * w + j;

      T y_val = BcastY ? y[j] : y[offset];
      T x_val = BcastY ? x[offset] : x[j];
      int64_t intermediate_out_offset;
      if (KeepIntermediateOut) {
        T intermeidiate_out = compound_functor.GetIntermediateOut(x_val, y_val);

        if (SameShapeOfIntermediateOutAndOut) {
          // for the case of f1(f2(x, y))
          intermediate_out_offset = offset;
        } else if (BcastY) {
          intermediate_out_offset = j;
        } else {
          intermediate_out_offset = offset;
        }

        intermediate_out[intermediate_out_offset] = intermeidiate_out;
        out[offset] =
            compound_functor.GetOutUseIntermediateOut(x_val, intermeidiate_out);
      } else {
        out[offset] = compound_functor.GetOut(x_val, y_val);
      }
    }
  }
}

// FusedElemwiseAndActBroadcast2
// In this case, X and Y can be reshaped to a matrix.
// For example shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4) and axis = 1,
// X can be reshaped to (2, 12, 5) and Y can be reshaped to (1, 12, 1)
// pre = 2, n = 12, post = 5
template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActBroadcast2CPU(const T *x, const T *y, int pre,
                                             int n, int post,
                                             CompoundFunctor compound_functor,
                                             T *out, T *intermediate_out) {
  for (int i = 0; i < pre; ++i) {
    for (int j = 0; j < n; ++j) {
      for (int k = 0; k < post; ++k) {
        int offset = i * n * post + j * post + k;

        T y_val = BcastY ? y[j] : y[offset];
        T x_val = BcastY ? x[offset] : x[j];
        int64_t intermediate_out_offset;

        if (KeepIntermediateOut) {
          T intermeidiate_out =
              compound_functor.GetIntermediateOut(x_val, y_val);

          if (SameShapeOfIntermediateOutAndOut) {
            // for the case of f1(f2(x, y))
            intermediate_out_offset = offset;
          } else if (BcastY) {
            intermediate_out_offset = j;
          } else {
            intermediate_out_offset = offset;
          }

          intermediate_out[intermediate_out_offset] = intermeidiate_out;
          out[offset] = compound_functor.GetOutUseIntermediateOut(
              x_val, intermeidiate_out);
        } else {
          out[offset] = compound_functor.GetOut(x_val, y_val);
        }
      }
    }
  }
}

299
#if defined(__NVCC__) || defined(__HIPCC__)
300 301 302 303 304
template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static __global__ void FusedElemwiseAndActBroadcast1CUDAKernel(
    const T *x, const T *y, int h, int w, CompoundFunctor compound_functor,
    T *out, T *intermediate_out) {
305 306
  int i = blockIdx.x;
  int j = threadIdx.x;
307

308
  while (j < w) {
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
    int offset = i * w + j;

    T y_val = BcastY ? y[j] : y[offset];
    T x_val = BcastY ? x[offset] : x[j];
    int64_t intermediate_out_offset;

    if (KeepIntermediateOut) {
      T intermeidiate_out = compound_functor.GetIntermediateOut(x_val, y_val);

      if (SameShapeOfIntermediateOutAndOut) {
        // for the case of f1(f2(x, y))
        intermediate_out_offset = offset;
      } else if (BcastY) {
        intermediate_out_offset = j;
      } else {
        intermediate_out_offset = offset;
      }

      intermediate_out[intermediate_out_offset] = intermeidiate_out;
      out[offset] =
          compound_functor.GetOutUseIntermediateOut(x_val, intermeidiate_out);
    } else {
      out[offset] = compound_functor.GetOut(x_val, y_val);
    }

334
    j += ELEMWISE_MAX_BLOCK_DIM;
335 336 337 338 339
  }
}

template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
340
static void FusedElemwiseAndActBroadcast1CUDA(gpuStream_t stream, const T *x,
341 342 343 344
                                              const T *y,
                                              CompoundFunctor compound_functor,
                                              int h, int w, T *out,
                                              T *intermediate_out) {
345 346
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, w);
  int gird_size = h;
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
  FusedElemwiseAndActBroadcast1CUDAKernel<
      T, CompoundFunctor, BcastY, KeepIntermediateOut,
      SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
      x, y, h, w, compound_functor, out, intermediate_out);
}

template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static __global__ void FusedElemwiseAndActBroadcast2CUDAKernel(
    const T *x, const T *y, CompoundFunctor compound_functor, int pre, int n,
    int post, T *out, T *intermediate_out) {
  int tid = threadIdx.x;
  int j = blockIdx.x;

  while (true) {
    int i = tid / post;
    int k = tid % post;
    if (i >= pre) break;

    int offset = i * n * post + j * post + k;

    T y_val = BcastY ? y[j] : y[offset];
    T x_val = BcastY ? x[offset] : x[j];
    int64_t intermediate_out_offset;

    if (KeepIntermediateOut) {
      T intermeidiate_out = compound_functor.GetIntermediateOut(x_val, y_val);

      if (SameShapeOfIntermediateOutAndOut) {
        // for the case of f1(f2(x, y))
        intermediate_out_offset = offset;
      } else if (BcastY) {
        intermediate_out_offset = j;
      } else {
        intermediate_out_offset = offset;
      }

      intermediate_out[intermediate_out_offset] = intermeidiate_out;
      out[offset] =
          compound_functor.GetOutUseIntermediateOut(x_val, intermeidiate_out);
    } else {
      out[offset] = compound_functor.GetOut(x_val, y_val);
    }

    tid += ELEMWISE_MAX_BLOCK_DIM;
  }
}

template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
397
static void FusedElemwiseAndActBroadcast2CUDA(gpuStream_t stream, const T *x,
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
                                              const T *y, int pre, int n,
                                              int post,
                                              CompoundFunctor compound_functor,
                                              T *out, T *intermediate_out) {
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post);
  int gird_size = n;

  FusedElemwiseAndActBroadcast2CUDAKernel<
      T, CompoundFunctor, BcastY, KeepIntermediateOut,
      SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
      x, y, compound_functor, pre, n, post, out, intermediate_out);
}

#endif

template <typename DeviceContext, typename T, typename CompoundFunctor,
          bool KeepIntermediateOut>
void FusedElemwiseAndActComputeNoBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::Tensor &x, const framework::Tensor &y,
    CompoundFunctor compound_functor, framework::Tensor *out,
    framework::Tensor *intermediate_out) {
  size_t N = static_cast<size_t>(framework::product(x_dim));

  platform::ForRange<DeviceContext> for_range(
      ctx.template device_context<DeviceContext>(), N);

  for_range(
      FusedElemwiseAndActNoBroadcast<T, CompoundFunctor, KeepIntermediateOut>{
          x.data<T>(), y.data<T>(), compound_functor,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace())});
}

template <typename DeviceContext, typename T, typename CompoundFunctor,
          bool BcastY, bool KeepIntermediateOut,
          bool SameShapeOfIntermediateOutAndOut>
void FusedElemwiseAndActComputeWithBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim_untrimed, const framework::Tensor &x,
    const framework::Tensor &y, CompoundFunctor compound_functor, int axis,
    framework::Tensor *out, framework::Tensor *intermediate_out) {
  axis = (axis == -1 ? x_dim.size() - y_dim_untrimed.size() : axis);
  auto y_dim = trim_trailing_singular_dims(y_dim_untrimed);
  axis = (y_dim.size() == 0) ? x_dim.size() : axis;

446
  int pre, n, post, is_run_common_broadcast;
447 448
  pten::funcs::get_mid_dims(x_dim, y_dim, axis, &pre, &n, &post,
                            &is_run_common_broadcast);
449 450 451 452
  if (post == 1) {
    int h = pre;
    int w = n;
    if (platform::is_gpu_place(ctx.GetPlace())) {
453
#if defined(__NVCC__) || defined(__HIPCC__)
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
      FusedElemwiseAndActBroadcast1CUDA<T, CompoundFunctor, BcastY,
                                        KeepIntermediateOut,
                                        SameShapeOfIntermediateOutAndOut>(
          ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
          y.data<T>(), compound_functor, h, w,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      FusedElemwiseAndActBroadcast1CPU<T, CompoundFunctor, BcastY,
                                       KeepIntermediateOut,
                                       SameShapeOfIntermediateOutAndOut>(
          x.data<T>(), y.data<T>(), compound_functor, h, w,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
    }
  } else {
    if (platform::is_gpu_place(ctx.GetPlace())) {
476
#if defined(__NVCC__) || defined(__HIPCC__)
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
      FusedElemwiseAndActBroadcast2CUDA<T, CompoundFunctor, BcastY,
                                        KeepIntermediateOut,
                                        SameShapeOfIntermediateOutAndOut>(
          ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
          y.data<T>(), pre, n, post, compound_functor,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      FusedElemwiseAndActBroadcast2CPU<T, CompoundFunctor, BcastY,
                                       KeepIntermediateOut,
                                       SameShapeOfIntermediateOutAndOut>(
          x.data<T>(), y.data<T>(), pre, n, post, compound_functor,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
    }
  }
}

// --- backward
C
chengduo 已提交
501 502
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut>
503 504
struct FusedElemwiseAndActGradNoBroadcast {
  HOSTDEVICE void operator()(size_t i) {
505 506 507
    T zero = static_cast<T>(0);
    T x_val = (x_ == nullptr) ? zero : x_[i];
    T y_val = (y_ == nullptr) ? zero : y_[i];
508 509 510 511 512
    T out_val = out_[i];
    T dout_val = dout_[i];
    T intermediate_out_val = UseIntermediateOut
                                 ? intermediate_out_[i]
                                 : dx_op_.GetIntermediateOut(x_val, y_val);
513
    if (dx_ != nullptr) {
514 515
      dx_[i] = dx_op_.UseIntermediateOut(x_val, y_val, intermediate_out_val,
                                         out_val, dout_val);
516 517
    }
    if (dy_ != nullptr) {
518 519
      dy_[i] = dy_op_.UseIntermediateOut(x_val, y_val, intermediate_out_val,
                                         out_val, dout_val);
C
chengduo 已提交
520 521
    }
    if (dintermediate_ != nullptr) {
522 523
      dintermediate_[i] = dintermediate_op_.UseIntermediateOut(
          x_val, intermediate_out_val, out_val, dout_val);
524 525 526 527 528 529 530 531 532 533
    }
  }

  const T *x_;
  const T *y_;
  const T *intermediate_out_;
  const T *out_;
  const T *dout_;
  DX_OP dx_op_;
  DY_OP dy_op_;
C
chengduo 已提交
534
  DIntermediate_OP dintermediate_op_;
535 536
  T *dx_;
  T *dy_;
C
chengduo 已提交
537
  T *dintermediate_;
538 539 540
};

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
C
chengduo 已提交
541
          typename DIntermediate_OP, bool UseIntermediateOut>
542 543 544 545 546
void FusedElemwiseAndActGradComputeNoBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim, const framework::Tensor *x,
    const framework::Tensor *y, const framework::Tensor *intermediate_out,
    const framework::Tensor *out, const framework::Tensor *dout, int axis,
C
chengduo 已提交
547 548 549
    framework::Tensor *dx, framework::Tensor *dy,
    framework::Tensor *dintermediate, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op) {
550 551 552
  size_t N = static_cast<size_t>(framework::product(x_dim));
  platform::ForRange<DeviceContext> for_range(
      ctx.template device_context<DeviceContext>(), N);
553 554 555 556 557 558 559 560 561 562 563 564 565
  const T *x_data = nullptr;
  const T *y_data = nullptr;
  if (x->IsInitialized()) x_data = x->data<T>();
  if (y->IsInitialized()) y_data = y->data<T>();

  for_range(FusedElemwiseAndActGradNoBroadcast<
            T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut>{
      x_data, y_data, intermediate_out ? intermediate_out->data<T>() : nullptr,
      out->data<T>(), dout->data<T>(), dx_op, dy_op, dintermediate_op,
      dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
      dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
      dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                               ctx.GetPlace())});
566 567
}

C
chengduo 已提交
568 569 570 571 572 573 574
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActGradBroadcast1CPU(
    const T *x, const T *y, const T *intermediate_out, const T *out,
    const T *dout, int h, int w, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
575
  int64_t tmp_out_idx, x_idx, y_idx;
576
  T zero = static_cast<T>(0);
577 578 579 580 581 582 583
  for (int i = 0; i < h; ++i) {
    for (int j = 0; j < w; ++j) {
      int offset = i * w + j;

      tmp_out_idx = BcastY ? j : offset;
      y_idx = BcastY ? j : offset;
      x_idx = BcastY ? offset : j;
584 585
      T x_val = (x == nullptr) ? zero : x[x_idx];
      T y_val = (y == nullptr) ? zero : y[y_idx];
586 587 588 589 590 591 592

      if (SameShapeOfIntermediateOutAndOut) {
        tmp_out_idx = offset;
      }

      if (dx != nullptr) {
        T tmp = UseIntermediateOut
593
                    ? dx_op.UseIntermediateOut(x_val, y_val,
C
chengduo 已提交
594 595
                                               intermediate_out[tmp_out_idx],
                                               out[offset], dout[offset])
596
                    : dx_op.Recompute(x_val, y_val, out[offset], dout[offset]);
597 598 599 600 601 602 603 604 605 606 607 608 609

        if (BcastY) {
          dx[x_idx] = tmp;
        } else {
          if (i == 0) {
            dx[x_idx] = tmp;
          } else {
            dx[x_idx] += tmp;
          }
        }
      }
      if (dy != nullptr) {
        T tmp = UseIntermediateOut
610
                    ? dy_op.UseIntermediateOut(x_val, y_val,
C
chengduo 已提交
611 612
                                               intermediate_out[tmp_out_idx],
                                               out[offset], dout[offset])
613
                    : dy_op.Recompute(x_val, y_val, out[offset], dout[offset]);
614 615 616 617 618 619 620 621 622 623
        if (BcastY) {
          if (i == 0) {
            dy[y_idx] = tmp;
          } else {
            dy[y_idx] += tmp;
          }
        } else {
          dy[y_idx] = tmp;
        }
      }
C
chengduo 已提交
624 625 626
      if (d_intermediate != nullptr) {
        T tmp = UseIntermediateOut
                    ? dintermediate_op.UseIntermediateOut(
627
                          x_val, intermediate_out[tmp_out_idx], out[offset],
C
chengduo 已提交
628
                          dout[offset])
629 630
                    : dintermediate_op.Recompute(x_val, y_val, out[offset],
                                                 dout[i]);
C
chengduo 已提交
631 632 633 634 635 636 637 638 639 640
        if (SameShapeOfIntermediateOutAndOut) {
          d_intermediate[tmp_out_idx] = tmp;
        } else {
          if (i == 0) {
            d_intermediate[tmp_out_idx] = tmp;
          } else {
            d_intermediate[tmp_out_idx] += tmp;
          }
        }
      }
641 642 643 644
    }
  }
}

C
chengduo 已提交
645 646 647 648 649 650 651
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActGradBroadcast2CPU(
    const T *x, const T *y, const T *intermediate_out, const T *out,
    const T *dout, int pre, int n, int post, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
652
  int64_t tmp_out_idx, x_idx, y_idx;
653
  T zero = static_cast<T>(0);
654 655 656 657 658 659 660 661 662
  for (int i = 0; i < pre; ++i) {
    for (int j = 0; j < n; ++j) {
      for (int k = 0; k < post; ++k) {
        int offset = i * n * post + j * post + k;

        tmp_out_idx = BcastY ? j : offset;
        y_idx = BcastY ? j : offset;
        x_idx = BcastY ? offset : j;

663 664 665
        T x_val = (x == nullptr) ? zero : x[x_idx];
        T y_val = (y == nullptr) ? zero : y[y_idx];

666 667 668 669 670
        if (SameShapeOfIntermediateOutAndOut) {
          tmp_out_idx = offset;
        }

        if (dx != nullptr) {
671 672 673 674 675 676
          T tmp =
              UseIntermediateOut
                  ? dx_op.UseIntermediateOut(x_val, y_val,
                                             intermediate_out[tmp_out_idx],
                                             out[offset], dout[offset])
                  : dx_op.Recompute(x_val, y_val, out[offset], dout[offset]);
677 678 679 680 681 682 683 684 685 686 687 688

          if (BcastY) {
            dx[x_idx] = tmp;
          } else {
            if (i == 0 && k == 0) {
              dx[x_idx] = tmp;
            } else {
              dx[x_idx] += tmp;
            }
          }
        }
        if (dy != nullptr) {
689 690 691 692 693 694
          T tmp =
              UseIntermediateOut
                  ? dy_op.UseIntermediateOut(x_val, y_val,
                                             intermediate_out[tmp_out_idx],
                                             out[offset], dout[offset])
                  : dy_op.Recompute(x_val, y_val, out[offset], dout[offset]);
695 696 697 698 699 700 701 702 703 704
          if (BcastY) {
            if (i == 0 && k == 0) {
              dy[y_idx] = tmp;
            } else {
              dy[y_idx] += tmp;
            }
          } else {
            dy[y_idx] = tmp;
          }
        }
C
chengduo 已提交
705 706 707
        if (d_intermediate != nullptr) {
          T tmp = UseIntermediateOut
                      ? dintermediate_op.UseIntermediateOut(
708 709 710 711
                            x_val, intermediate_out[tmp_out_idx], out[offset],
                            dout[offset])
                      : dintermediate_op.Recompute(x_val, y_val, out[offset],
                                                   dout[i]);
C
chengduo 已提交
712 713 714 715 716 717 718 719 720 721
          if (SameShapeOfIntermediateOutAndOut) {
            d_intermediate[tmp_out_idx] = tmp;
          } else {
            if (i == 0) {
              d_intermediate[tmp_out_idx] = tmp;
            } else {
              d_intermediate[tmp_out_idx] += tmp;
            }
          }
        }
722 723 724 725 726
      }
    }
  }
}

727
#if defined(__NVCC__) || defined(__HIPCC__)
C
chengduo 已提交
728 729 730
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
731 732
static __global__ void FusedElemwiseAndActGradBroadcast1CUDAKernel(
    const T *x, const T *y, const T *intermediate_out, const T *out,
C
chengduo 已提交
733 734
    const T *dout, int h, int w, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
735 736 737 738 739 740
  __shared__ T sdata[BLOCK_Y][BLOCK_X];
  size_t idx = threadIdx.x + BLOCK_X * blockIdx.x;
  size_t width_stride = gridDim.x * BLOCK_X;

  size_t full_w = ROUNDUP(w, BLOCK_X);

741
  T zero = static_cast<T>(0);
742

743 744 745 746 747
  for (size_t j = idx; j < full_w; j += width_stride) {
    T val(0), inter_val(0);
    if (j < w) {
      for (size_t i = threadIdx.y; i < h; i += BLOCK_Y) {
        size_t offset = i * w + j;
748

749 750 751 752 753
        size_t tmp_out_idx = BcastY ? j : offset;
        size_t y_idx = BcastY ? j : offset;
        size_t x_idx = BcastY ? offset : j;
        T x_val = (x == nullptr) ? zero : x[x_idx];
        T y_val = (y == nullptr) ? zero : y[y_idx];
754

755 756 757
        if (SameShapeOfIntermediateOutAndOut) {
          tmp_out_idx = offset;
        }
758

759 760 761
        if (dx != nullptr) {
          T tmp =
              UseIntermediateOut
762 763 764 765
                  ? dx_op.UseIntermediateOut(x_val, y_val,
                                             intermediate_out[tmp_out_idx],
                                             out[offset], dout[offset])
                  : dx_op.Recompute(x_val, y_val, out[offset], dout[offset]);
766

767 768 769 770 771 772 773 774 775
          if (BcastY) {
            dx[x_idx] = tmp;
          } else {
            val += tmp;
          }
        }
        if (dy != nullptr) {
          T tmp =
              UseIntermediateOut
776 777 778 779
                  ? dy_op.UseIntermediateOut(x_val, y_val,
                                             intermediate_out[tmp_out_idx],
                                             out[offset], dout[offset])
                  : dy_op.Recompute(x_val, y_val, out[offset], dout[offset]);
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
          if (BcastY) {
            val += tmp;
          } else {
            dy[y_idx] = tmp;
          }
        }
        if (d_intermediate != nullptr) {
          T tmp = UseIntermediateOut
                      ? dintermediate_op.UseIntermediateOut(
                            y[y_idx], intermediate_out[tmp_out_idx],
                            out[offset], dout[offset])
                      : dintermediate_op.Recompute(x_val, y_val, out[offset],
                                                   dout[offset]);
          if (SameShapeOfIntermediateOutAndOut) {
            d_intermediate[tmp_out_idx] = tmp;
          } else {
            inter_val += tmp;
          }
        }
C
chengduo 已提交
799 800
      }
    }
801

802 803 804 805 806 807 808 809 810
    // transpose, for ReduceSum with wrap
    sdata[threadIdx.y][threadIdx.x] = val;
    __syncthreads();
    val = sdata[threadIdx.x][threadIdx.y];
#pragma unroll
    for (int i = BLOCK_X >> 1; i > 0; i >>= 1) {
      // reduce sum with wrap
      val += platform::CudaShuffleXorSync(0xFFFFFFFF, val, i);
    }
811

812 813 814 815
    size_t idx_j = j + threadIdx.y;
    if (BcastY) {
      if (dy) {
        if (threadIdx.x == 0 && (idx_j < w)) dy[idx_j] = val;
816
      }
817 818 819
    } else {
      if (dx) {
        if (threadIdx.x == 0 && (idx_j < w)) dx[idx_j] = val;
820 821
      }
    }
822 823 824 825 826 827 828 829 830 831 832 833

    if (!SameShapeOfIntermediateOutAndOut) {
      if (d_intermediate) {
        sdata[threadIdx.y][threadIdx.x] = inter_val;
        __syncthreads();
        inter_val = sdata[threadIdx.x][threadIdx.y];
#pragma unroll
        for (int i = BLOCK_X >> 1; i > 0; i >>= 1) {
          // reduce sum with wrap
          inter_val += platform::CudaShuffleXorSync(0xFFFFFFFF, inter_val, i);
        }
        if (threadIdx.x == 0 && (idx_j < w)) d_intermediate[idx_j] = inter_val;
C
chengduo 已提交
834 835
      }
    }
836
  }  // end for
837 838
}

C
chengduo 已提交
839 840 841 842
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActGradBroadcast1CUDA(
843 844 845 846 847 848 849 850 851 852 853 854
    const framework::ExecutionContext &ctx, const T *x, const T *y,
    const T *intermediate_out, const T *out, const T *dout, int h, int w,
    DX_OP dx_op, DY_OP dy_op, DIntermediate_OP dintermediate_op, T *dx, T *dy,
    T *d_intermediate) {
  gpuStream_t stream = ctx.cuda_device_context().stream();

  dim3 blocks(BLOCK_X, BLOCK_Y);
  int max_gpu_threads = ctx.cuda_device_context().GetMaxPhysicalThreadCount();
  int max_blocks = std::max(max_gpu_threads / (BLOCK_X * BLOCK_Y), 1);
  int theory_block = (w + BLOCK_X - 1) / BLOCK_X;
  dim3 grids(std::min(theory_block, max_blocks));

855
  FusedElemwiseAndActGradBroadcast1CUDAKernel<
C
chengduo 已提交
856
      T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut, BcastY,
857
      SameShapeOfIntermediateOutAndOut><<<grids, blocks, 0, stream>>>(
C
chengduo 已提交
858 859
      x, y, intermediate_out, out, dout, h, w, dx_op, dy_op, dintermediate_op,
      dx, dy, d_intermediate);
860 861
}

C
chengduo 已提交
862 863 864
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
865 866
static __global__ void FusedElemwiseAndActGradBroadcast2CUDAKernel(
    const T *x, const T *y, const T *intermediate_out, const T *out,
C
chengduo 已提交
867 868
    const T *dout, int pre, int n, int post, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
869 870 871
  int tid = threadIdx.x;
  int j = blockIdx.x;

C
chengduo 已提交
872
  T val(0), inter_val(0);
873 874
  int ttid = tid;
  int64_t tmp_out_idx, x_idx, y_idx;
875
  T zero = static_cast<T>(0);
876 877 878 879 880 881 882 883 884 885
  while (true) {
    int i = ttid / post;
    int k = ttid % post;
    if (i >= pre) break;

    int offset = i * n * post + j * post + k;

    tmp_out_idx = BcastY ? j : offset;
    y_idx = BcastY ? j : offset;
    x_idx = BcastY ? offset : j;
886 887
    T x_val = (x == nullptr) ? zero : x[x_idx];
    T y_val = (y == nullptr) ? zero : y[y_idx];
888 889 890 891 892 893

    if (SameShapeOfIntermediateOutAndOut) {
      tmp_out_idx = offset;
    }

    if (dx != nullptr) {
894 895 896 897 898
      T tmp = UseIntermediateOut
                  ? dx_op.UseIntermediateOut(x_val, y_val,
                                             intermediate_out[tmp_out_idx],
                                             out[offset], dout[offset])
                  : dx_op.Recompute(x_val, y_val, out[offset], dout[offset]);
899 900 901 902 903 904 905 906

      if (BcastY) {
        dx[x_idx] = tmp;
      } else {
        val += tmp;
      }
    }
    if (dy != nullptr) {
907 908 909 910 911
      T tmp = UseIntermediateOut
                  ? dy_op.UseIntermediateOut(x_val, y_val,
                                             intermediate_out[tmp_out_idx],
                                             out[offset], dout[offset])
                  : dy_op.Recompute(x_val, y_val, out[offset], dout[offset]);
912 913 914 915 916 917
      if (BcastY) {
        val += tmp;
      } else {
        dy[y_idx] = tmp;
      }
    }
C
chengduo 已提交
918 919 920
    if (d_intermediate != nullptr) {
      T tmp = UseIntermediateOut
                  ? dintermediate_op.UseIntermediateOut(
921
                        y_val, intermediate_out[tmp_out_idx], out[offset],
C
chengduo 已提交
922
                        dout[offset])
923
                  : dintermediate_op.Recompute(x_val, y_val, out[offset],
C
chengduo 已提交
924 925 926 927 928 929 930
                                               dout[offset]);
      if (SameShapeOfIntermediateOutAndOut) {
        d_intermediate[tmp_out_idx] = tmp;
      } else {
        inter_val += tmp;
      }
    }
931 932 933
    ttid += ELEMWISE_MAX_BLOCK_DIM;
  }

C
chengduo 已提交
934 935
  int h = pre * post;
  h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
  if (BcastY) {
    if (dy) {
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dy[j] = val;
      }
    }
  } else {
    if (dx) {
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dx[j] = val;
      }
    }
  }
C
chengduo 已提交
951 952 953 954 955 956 957 958
  if (!SameShapeOfIntermediateOutAndOut) {
    if (d_intermediate) {
      inter_val = paddle::platform::reduceSum(inter_val, tid, h);
      if (threadIdx.x == 0) {
        d_intermediate[j] = inter_val;
      }
    }
  }
959 960
}

C
chengduo 已提交
961 962 963
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
964
static void FusedElemwiseAndActGradBroadcast2CUDA(
965
    gpuStream_t stream, const T *x, const T *y, const T *intermediate_out,
966
    const T *out, const T *dout, int pre, int n, int post, DX_OP dx_op,
C
chengduo 已提交
967 968
    DY_OP dy_op, DIntermediate_OP dintermediate_op, T *dx, T *dy,
    T *dintermediate) {
969 970 971
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post);
  int gird_size = n;
  FusedElemwiseAndActGradBroadcast2CUDAKernel<
C
chengduo 已提交
972
      T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut, BcastY,
973
      SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
C
chengduo 已提交
974 975
      x, y, intermediate_out, out, dout, pre, n, post, dx_op, dy_op,
      dintermediate_op, dx, dy, dintermediate);
976 977 978 979
}
#endif

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
C
chengduo 已提交
980
          typename DIntermediate_OP, bool UseIntermediateOut, bool BcastY,
981 982 983 984 985 986
          bool SameShapeOfIntermediateOutAndOut>
void FusedElemwiseAndActGradComputeWithBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim_untrimed, const framework::Tensor *x,
    const framework::Tensor *y, const framework::Tensor *intermediate_out,
    const framework::Tensor *out, const framework::Tensor *dout, int axis,
C
chengduo 已提交
987 988 989
    framework::Tensor *dx, framework::Tensor *dy,
    framework::Tensor *dintermediate, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op) {
990 991 992 993
  axis = (axis == -1 ? x_dim.size() - y_dim_untrimed.size() : axis);
  auto y_dim = trim_trailing_singular_dims(y_dim_untrimed);
  axis = (y_dim.size() == 0) ? x_dim.size() : axis;

994
  int pre, n, post, is_run_common_broadcast;
995 996
  pten::funcs::get_mid_dims(x_dim, y_dim, axis, &pre, &n, &post,
                            &is_run_common_broadcast);
997 998 999 1000
  const T *x_data = nullptr;
  const T *y_data = nullptr;
  if (x->IsInitialized()) x_data = x->data<T>();
  if (y->IsInitialized()) y_data = y->data<T>();
1001 1002 1003
  if (post == 1) {
    int h = pre;
    int w = n;
1004

1005
    if (platform::is_gpu_place(ctx.GetPlace())) {
1006
#if defined(__NVCC__) || defined(__HIPCC__)
C
chengduo 已提交
1007 1008
      FusedElemwiseAndActGradBroadcast1CUDA<T, DX_OP, DY_OP, DIntermediate_OP,
                                            UseIntermediateOut, BcastY,
1009
                                            SameShapeOfIntermediateOutAndOut>(
1010
          ctx, x_data, y_data,
1011
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
C
chengduo 已提交
1012
          out->data<T>(), dout->data<T>(), h, w, dx_op, dy_op, dintermediate_op,
1013
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
1014 1015 1016
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace()));
1017 1018
#endif
    } else {
C
chengduo 已提交
1019 1020
      FusedElemwiseAndActGradBroadcast1CPU<T, DX_OP, DY_OP, DIntermediate_OP,
                                           UseIntermediateOut, BcastY,
1021
                                           SameShapeOfIntermediateOutAndOut>(
1022
          x_data, y_data,
1023
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
C
chengduo 已提交
1024
          out->data<T>(), dout->data<T>(), h, w, dx_op, dy_op, dintermediate_op,
1025
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
1026 1027 1028
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace()));
1029 1030 1031
    }
  } else {
    if (platform::is_gpu_place(ctx.GetPlace())) {
1032
#if defined(__NVCC__) || defined(__HIPCC__)
C
chengduo 已提交
1033 1034
      FusedElemwiseAndActGradBroadcast2CUDA<T, DX_OP, DY_OP, DIntermediate_OP,
                                            UseIntermediateOut, BcastY,
1035
                                            SameShapeOfIntermediateOutAndOut>(
1036
          ctx.template device_context<DeviceContext>().stream(), x_data, y_data,
1037 1038
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
          out->data<T>(), dout->data<T>(), pre, n, post, dx_op, dy_op,
C
chengduo 已提交
1039
          dintermediate_op,
1040
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
1041 1042 1043
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace()));
1044 1045
#endif
    } else {
C
chengduo 已提交
1046 1047
      FusedElemwiseAndActGradBroadcast2CPU<T, DX_OP, DY_OP, DIntermediate_OP,
                                           UseIntermediateOut, BcastY,
1048
                                           SameShapeOfIntermediateOutAndOut>(
1049
          x_data, y_data,
1050 1051
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
          out->data<T>(), dout->data<T>(), pre, n, post, dx_op, dy_op,
C
chengduo 已提交
1052
          dintermediate_op,
1053
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
1054 1055 1056
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace()));
1057 1058 1059 1060 1061
    }
  }
}

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
C
chengduo 已提交
1062 1063
          typename DIntermediate_OP, bool UseIntermediateOut,
          bool SameShapeOfIntermediateOutAndOut>
1064 1065 1066 1067
void FusedElemwiseAndActGradComputeEx(
    const framework::ExecutionContext &ctx, const framework::Tensor *x,
    const framework::Tensor *y, const framework::Tensor *out,
    const framework::Tensor *intermediate_out, const framework::Tensor *dout,
C
chengduo 已提交
1068 1069 1070
    int axis, framework::Tensor *dx, framework::Tensor *dy,
    framework::Tensor *dintermediate, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op) {
1071 1072 1073
  const framework::DDim &x_dim = x->dims();
  const framework::DDim &y_dim = y->dims();
  if (UseIntermediateOut) {
1074 1075 1076
    PADDLE_ENFORCE_NOT_NULL(
        intermediate_out,
        platform::errors::InvalidArgument("Intermediate out is null pointer."));
1077 1078
  }
  if (x_dim == y_dim) {
C
chengduo 已提交
1079 1080
    FusedElemwiseAndActGradComputeNoBroadcast<
        DeviceContext, T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut>(
1081
        ctx, x_dim, y_dim, x, y, intermediate_out, out, dout, axis, dx, dy,
C
chengduo 已提交
1082
        dintermediate, dx_op, dy_op, dintermediate_op);
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
  } else {  // Y is a scalar
    bool bcast_y = x_dim.size() >= y_dim.size();
    if (x_dim.size() == y_dim.size()) {
      for (int i = 0; i < x_dim.size(); ++i) {
        if (x_dim[i] < y_dim[i]) {
          bcast_y = false;
          break;
        }
      }
    }

    // z = f1(x, f2(y))
    // z = f1(f2(x, y))
    if (bcast_y) {  // Y should be broadcast.
      FusedElemwiseAndActGradComputeWithBroadcast<
C
chengduo 已提交
1098 1099 1100 1101
          DeviceContext, T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut,
          true /*BcastY*/, SameShapeOfIntermediateOutAndOut>(
          ctx, x_dim, y_dim, x, y, intermediate_out, out, dout, axis, dx, dy,
          dintermediate, dx_op, dy_op, dintermediate_op);
1102 1103
    } else {
      FusedElemwiseAndActGradComputeWithBroadcast<
C
chengduo 已提交
1104 1105 1106 1107
          DeviceContext, T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut,
          false /*BcastY*/, SameShapeOfIntermediateOutAndOut>(
          ctx, y_dim, x_dim, x, y, intermediate_out, out, dout, axis, dx, dy,
          dintermediate, dx_op, dy_op, dintermediate_op);
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
    }
  }
}

template <typename DeviceContext, typename T, typename CompoundFunctor,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
void FusedElemwiseAndActComputeEx(const framework::ExecutionContext &ctx,
                                  const framework::Tensor &x,
                                  const framework::Tensor &y, int axis,
                                  CompoundFunctor compound_functor,
                                  framework::Tensor *out,
                                  framework::Tensor *intermediate_out) {
  if (KeepIntermediateOut) {
1121 1122 1123 1124 1125
    PADDLE_ENFORCE_NOT_NULL(
        intermediate_out,
        platform::errors::InvalidArgument(
            "The save_intermediate_out is opened, intermediate "
            "out is null pointer."));
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
  }

  const framework::DDim &x_dim = x.dims();
  const framework::DDim &y_dim = y.dims();
  if (x.dims() == y.dims()) {
    FusedElemwiseAndActComputeNoBroadcast<DeviceContext, T, CompoundFunctor,
                                          KeepIntermediateOut>(
        ctx, x_dim, x, y, compound_functor, out, intermediate_out);
  } else {
    // Whether the shape of Y is a continuous subsequence of X,
    // For more information please refer to the op's introduction.
1137
    bool bcast_y = x.numel() >= y.numel();
1138 1139 1140 1141
    // z = f1(x, f2(y))
    // z = f1(f2(x, y))
    if (bcast_y) {  // Y should be broadcast.
      // In this case,
1142 1143
      // for 'f2(y)', the shape of intermediate_out should be equal to the
      // shape
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
      // of Y.
      // for 'f2(x, y)', the shape of intermediate_out should be equal to the
      // shape of Out.
      // the shape of Out should be equal to the shape of X.
      FusedElemwiseAndActComputeWithBroadcast<
          DeviceContext, T, CompoundFunctor, true /*BcastY*/,
          KeepIntermediateOut, SameShapeOfIntermediateOutAndOut>(
          ctx, x_dim /*OutShape*/, y_dim, x, y, compound_functor, axis, out,
          intermediate_out);
    } else {
      // In this case,
1155 1156
      // for 'f2(y)', the shape of intermediate_out should be equal to the
      // shape
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
      // of Out.
      // for 'f2(x, y)', the shape of intermediate_out should be equal to the
      // shape of Out.
      // the shape of Out should be equal to the shape of Y.
      FusedElemwiseAndActComputeWithBroadcast<
          DeviceContext, T, CompoundFunctor, false /*BcastY*/,
          KeepIntermediateOut, SameShapeOfIntermediateOutAndOut>(
          ctx, y_dim /*OutShape*/, x_dim, x, y, compound_functor, axis, out,
          intermediate_out);
    }
  }
}
1169 1170 1171 1172 1173

template <typename DeviceContext, typename T>
static inline void GetDoubleGradSafeTensor(
    const framework::ExecutionContext &ctx, const framework::Tensor *x,
    const framework::Tensor *ddx, framework::Tensor *ddx_safe) {
1174 1175 1176
  const auto &dev_ctx = ctx.template device_context<DeviceContext>();
  pten::funcs::GetDoubleGradSafeTensor<DeviceContext, T>(dev_ctx, *x, ddx,
                                                         ddx_safe);
1177 1178
}

1179 1180 1181 1182
// for broadcast backwards
static inline std::vector<int> GetReduceDim(const framework::DDim &in,
                                            const framework::DDim &out,
                                            int axis) {
1183
  return pten::funcs::GetReduceDim(in, out, axis);
1184
}
1185 1186 1187 1188 1189 1190 1191

#if defined(__NVCC__) || defined(__HIPCC__)
template <typename T>
void ReduceWrapper(const platform::CUDADeviceContext &dev_ctx, int axis,
                   framework::Tensor *src, framework::Tensor *dst) {
  std::vector<int> reduce_dims = GetReduceDim(dst->dims(), src->dims(), axis);
  TensorReduceFunctorImpl<T, T, kps::AddFunctor, kps::IdentityFunctor<T>>(
W
Wilber 已提交
1192 1193
      dev_ctx, *src, dst, kps::IdentityFunctor<T>(), reduce_dims,
      dev_ctx.stream());
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
}

template <ElementwiseType ET, typename T, typename Functor>
void GetGradXAndYOut(const platform::CUDADeviceContext &dev_ctx,
                     const platform::Place &place, int axis,
                     std::vector<const framework::Tensor *> ins,
                     const framework::Tensor *dout, framework::Tensor *dx,
                     framework::Tensor *dy, Functor func) {
  framework::Tensor tmp_dx;
  framework::Tensor tmp_dy;
1204
  dx->mutable_data<T>(place);
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
  dy->mutable_data<T>(place);
  std::vector<framework::Tensor *> outs;
  if (dx->dims() == dout->dims() && dy->dims() == dout->dims()) {
    outs = {dx, dy};
  } else if (dx->dims() != dout->dims() && dy->dims() == dout->dims()) {
    tmp_dx.mutable_data<T>(dout->dims(), place);
    outs = {&tmp_dx, dy};
  } else if (dx->dims() == dout->dims() && dy->dims() != dout->dims()) {
    tmp_dy.mutable_data<T>(dout->dims(), place);
    outs = {dx, &tmp_dy};
  } else if (dx->dims() != dout->dims() && dy->dims() != dout->dims()) {
    tmp_dy.mutable_data<T>(dout->dims(), place);
    tmp_dx.mutable_data<T>(dout->dims(), place);
    outs = {&tmp_dx, &tmp_dy};
  }

1221 1222
  paddle::operators::LaunchElementwiseCudaKernel<ET, T, T, decltype(func), 2>(
      dev_ctx, ins, &outs, axis, func);
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250

  if (dx->dims() != dout->dims() && dy->dims() == dout->dims()) {
    ReduceWrapper<T>(dev_ctx, axis, &tmp_dx, dx);
  } else if (dx->dims() == dout->dims() && dy->dims() != dout->dims()) {
    ReduceWrapper<T>(dev_ctx, axis, &tmp_dy, dy);
  } else if (dx->dims() != dout->dims() && dy->dims() != dout->dims()) {
    ReduceWrapper<T>(dev_ctx, axis, &tmp_dx, dx);
    ReduceWrapper<T>(dev_ctx, axis, &tmp_dy, dy);
  }
}

template <ElementwiseType ET, typename T, typename Functor>
void GetGradXOrYOut(const platform::CUDADeviceContext &dev_ctx,
                    const platform::Place &place, int axis,
                    std::vector<const framework::Tensor *> ins,
                    const framework::Tensor *dout, framework::Tensor *dxy,
                    Functor func) {
  framework::Tensor tmp_dxy;
  dxy->mutable_data<T>(place);

  std::vector<framework::Tensor *> outs;
  if (dxy->dims() != dout->dims()) {
    tmp_dxy.mutable_data<T>(dout->dims(), place);
    outs = {&tmp_dxy};
  } else {
    outs = {dxy};
  }

1251 1252
  paddle::operators::LaunchElementwiseCudaKernel<ET, T, T>(dev_ctx, ins, &outs,
                                                           axis, func);
1253 1254 1255 1256 1257 1258 1259
  if (dxy->dims() != dout->dims()) {
    ReduceWrapper<T>(dev_ctx, axis, &tmp_dxy, dxy);
  }
}

#endif

1260 1261
}  // namespace operators
}  // namespace paddle