ps_optimizer.py 9.8 KB
Newer Older
Z
ziyoujiyi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

from paddle import fluid
import paddle.distributed.passes
from .meta_optimizer_base import MetaOptimizerBase
from paddle.fluid import core
import subprocess
import re
import os
import platform
from paddle.distributed.ps.utils.public import *
from paddle.distributed.passes import PassContext
from ..base.private_helper_function import wait_server_ready
from paddle.distributed.ps.utils.ps_factory import PsProgramBuilderFactory


class ParameterServerOptimizer(MetaOptimizerBase):
29

Z
ziyoujiyi 已提交
30 31 32 33 34 35 36 37
    def __init__(self, optimizer):
        super(ParameterServerOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
        # we do not allow meta optimizer to be inner optimizer currently
        self.meta_optimizers_white_list = []

    def _set_basic_info(self, loss, role_maker, user_defined_optimizer,
                        user_defined_strategy):
38 39 40
        super(ParameterServerOptimizer,
              self)._set_basic_info(loss, role_maker, user_defined_optimizer,
                                    user_defined_strategy)
Z
ziyoujiyi 已提交
41

42 43 44 45 46
    def _set_origin_programs(self, losses):
        self.origin_main_programs = []
        for loss in losses:
            self.origin_main_programs.append(loss.block.program)

Z
ziyoujiyi 已提交
47
    def _init_ps_pass_context(self, loss, startup_program):
48
        self.pass_ctx = PassContext()
Z
ziyoujiyi 已提交
49
        attrs = {}
Z
ziyoujiyi 已提交
50
        # trainer
Z
ziyoujiyi 已提交
51
        attrs["env"] = get_dist_env()
Z
ziyoujiyi 已提交
52

Z
ziyoujiyi 已提交
53 54 55 56
        attrs['loss'] = loss
        attrs['min_block_size'] = 81920
        attrs['origin_main_program'] = loss.block.program
        attrs['origin_startup_program'] = startup_program
57 58

        attrs['origin_main_programs'] = self.origin_main_programs
Z
ziyoujiyi 已提交
59

Z
ziyoujiyi 已提交
60 61
        attrs['cloned_main'] = attrs['origin_main_program'].clone()
        attrs['cloned_startup'] = attrs['origin_startup_program'].clone()
Z
ziyoujiyi 已提交
62

Z
ziyoujiyi 已提交
63
        attrs['user_defined_strategy'] = self.user_defined_strategy
Z
ziyoujiyi 已提交
64
        attrs['valid_strategy'] = self.user_defined_strategy
Z
ziyoujiyi 已提交
65 66
        attrs['trainer'] = TrainerRuntimeConfig(self.user_defined_strategy)
        attrs['ps_mode'] = attrs['trainer'].mode
67
        logger.info("ps_mode: {}".format(attrs['ps_mode']))
Z
ziyoujiyi 已提交
68 69
        attrs['role_maker'] = self.role_maker
        attrs[
Z
ziyoujiyi 已提交
70
            'is_heter_ps_mode'] = self.role_maker._is_heter_parameter_server_mode
Z
ziyoujiyi 已提交
71 72 73
        attrs['is_worker'] = self.role_maker._is_worker()
        attrs['is_server'] = self.role_maker._is_server()
        attrs['is_heter_worker'] = self.role_maker._is_heter_worker()
74 75
        logger.info("this process is heter? {}".format(
            attrs['is_heter_worker']))
Z
ziyoujiyi 已提交
76
        attrs['use_ps_gpu'] = self.user_defined_strategy.a_sync_configs[
Z
ziyoujiyi 已提交
77
            "use_ps_gpu"]
Z
ziyoujiyi 已提交
78 79
        attrs['lr_decay_steps'] = self.user_defined_strategy.a_sync_configs[
            "lr_decay_steps"]
80
        attrs['is_fl_ps_mode'] = self.user_defined_strategy.is_fl_ps_mode
Z
ziyoujiyi 已提交
81 82 83 84 85
        attrs['k_steps'] = self.user_defined_strategy.a_sync_configs["k_steps"]
        attrs['launch_barrier'] = self.user_defined_strategy.a_sync_configs[
            "launch_barrier"]

        attrs['launch_barrier_flag'] = int(
Z
ziyoujiyi 已提交
86 87
            os.getenv("FLAGS_LAUNCH_BARRIER", "1"))

Z
ziyoujiyi 已提交
88
        build_var_distributed(attrs)
Z
ziyoujiyi 已提交
89

90
        # server
Z
ziyoujiyi 已提交
91 92 93
        attrs['_main_server'] = fluid.Program()
        attrs['_startup_server'] = fluid.Program()
        attrs['tensor_table'] = {}
Z
ziyoujiyi 已提交
94

Z
ziyoujiyi 已提交
95
        self.pass_ctx._attrs = attrs
Z
ziyoujiyi 已提交
96 97 98 99 100

    def _is_graph_out(self):
        return False

    def _can_apply(self):
101
        if self.role_maker._is_collective:
Z
ziyoujiyi 已提交
102
            return False
103 104 105

        k_steps = self.user_defined_strategy.a_sync_configs["k_steps"]
        return True if k_steps >= 0 else False
Z
ziyoujiyi 已提交
106 107 108 109 110 111 112 113 114 115

    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
        self.inner_opt.minimize(loss, startup_program, parameter_list,
                                no_grad_set)
        if startup_program == None:
            startup_program = paddle.static.default_startup_program()
116

117

118 119
#        print("program after inner optimizer minimize:",
#              str(loss.block.program))
120
        self._set_origin_programs([loss])
Z
ziyoujiyi 已提交
121 122 123 124 125 126
        self._init_ps_pass_context(loss, startup_program)
        ps_builder = PsProgramBuilderFactory()._create_ps_program_builder(
            self.pass_ctx)
        ps_builder._build_programs()
        return None, None

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    def minimize_losses_impl(self,
                             losses,
                             startup_program=None,
                             parameter_list=None,
                             no_grad_set=None):
        if parameter_list is None:
            parameter_list = [None] * len(losses)
        for idx, loss in enumerate(losses):
            startup_prog = startup_program[idx]
            parameters = parameter_list[idx]
            self.inner_opt.minimize(loss, startup_prog, parameters, no_grad_set)
        self._set_origin_programs(losses)
        for idx, loss in enumerate(losses):
            print("ps_optimizer idx loss:", idx, loss)
            startup_prog = startup_program[idx]
            self._init_ps_pass_context(loss, startup_prog)
            ps_builder = PsProgramBuilderFactory()._create_ps_program_builder(
                self.pass_ctx)
            ps_builder._build_programs()
            startup_program[idx] = self.pass_ctx._attrs['cloned_startup']
        return None, None

Z
ziyoujiyi 已提交
149
    def _can_apply_geo(self, program):
150

Z
ziyoujiyi 已提交
151 152 153
        def get_sys_free_mem():
            plat = platform.system()
            if platform.system() == "Darwin":
154 155
                vm = subprocess.Popen(['vm_stat'],
                                      stdout=subprocess.PIPE).communicate()[0]
Z
ziyoujiyi 已提交
156 157 158 159 160 161 162
                # Process vm_stat
                vmLines = vm.split('\n')
                sep = re.compile(r':[\s]+')
                vmStats = {}
                for row in range(1, len(vmLines) - 2):
                    rowText = vmLines[row].strip()
                    rowElements = sep.split(rowText)
163 164
                    vmStats[(rowElements[0])] = int(
                        rowElements[1].strip(r'\.')) * 4096
Z
ziyoujiyi 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
                return vmStats["Pages free"]
            elif platform.system() == "Linux":
                mems = {}
                with open('/proc/meminfo', 'rb') as f:
                    for line in f:
                        fields = line.split()
                        mems[fields[0]] = int(fields[1]) * 1024
                free = mems[b'MemFree:']
                return free
            else:
                raise ValueError(
                    "%s platform is unsupported is parameter server optimizer" %
                    (platform.system()))

        if not isinstance(self.inner_opt, fluid.optimizer.SGDOptimizer):
            return False

        free = get_sys_free_mem()
        processed_var_names = set(["@EMPTY@"])
        param_memory_size = 0
        for varname in program.global_block().vars:
            var = program.global_block().vars[varname]
            if not var.persistable or var.desc.type(
            ) != core.VarDesc.VarType.LOD_TENSOR:
                continue
            param_memory_size += get_var_mem_size(var)
            processed_var_names.add(varname)

        upper_mem_use = param_memory_size * 5.0

        program_tmp_vars = dict()
        eval_batch_size = 1024
        for op in program.global_block().ops:
            for var_name in op.output_arg_names:
                if var_name in processed_var_names:
                    continue
                processed_var_names.add(var_name)
                var = program.global_block().vars[var_name]

                if var.desc.type() != core.VarDesc.VarType.LOD_TENSOR:
                    continue

                data_count = 1
                neg_dim_count = 0
                for x in var.shape:
                    if x < 0:
                        if neg_dim_count >= 1:
                            raise ValueError(
                                "Var %s has more than one negative dim." %
                                (var_name))
                        neg_dim_count += 1
                        data_count *= (-x)
                    else:
                        data_count *= x
219 220
                program_tmp_vars[var_name] = (data_count, neg_dim_count,
                                              dtype_to_size[var.dtype])
Z
ziyoujiyi 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234

        for varname in program_tmp_vars:
            data_count, neg_dim_count, type_size = program_tmp_vars[varname]
            if neg_dim_count == 1:
                data_count *= eval_batch_size
            var_memory = data_count * type_size
            upper_mem_use += var_memory

        if upper_mem_use < free:
            return True
        else:
            return False

    def _enable_strategy(self, dist_strategy, context):
235
        a_sync_configs = dist_strategy.a_sync_configs
Z
ziyoujiyi 已提交
236 237 238
        if dist_strategy.a_sync_configs["k_steps"] >= 0:
            return
        dist_strategy.a_sync = True
239 240
        a_sync_configs = dist_strategy.a_sync_configs

Z
ziyoujiyi 已提交
241
        is_geo = self._can_apply_geo(context["origin_main_program"])
242 243 244

        a_sync_configs["k_steps"] = 800 if is_geo else 0
        dist_strategy.a_sync_configs = a_sync_configs
Z
ziyoujiyi 已提交
245 246 247

    def _disable_strategy(self, dist_strategy):
        dist_strategy.a_sync = False
248
        a_sync_configs = dist_strategy.a_sync_configs
Z
ziyoujiyi 已提交
249
        dist_strategy.a_sync_configs["k_steps"] = -1
250
        dist_strategy.a_sync_configs = a_sync_configs