ProcessGroupNCCL.cc 52.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
16

L
lilong12 已提交
17
#include "paddle/fluid/distributed/collective/Common.h"
18
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
L
LiYuRio 已提交
19
#include "paddle/phi/api/lib/utils/allocator.h"
20 21 22 23 24 25 26 27 28

DECLARE_bool(nccl_blocking_wait);
DECLARE_bool(use_stream_safe_cuda_allocator);

constexpr int64_t kWaitBlockTImeout = 10;

namespace paddle {
namespace distributed {

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
ProcessGroupNCCL::NCCLTask::NCCLTask(const Place& place,
                                     int rank,
                                     CommType comm_type,
                                     bool sync_op,
                                     bool use_calc_stream)
    : TaskStream(rank, comm_type, sync_op, use_calc_stream),
      comm_event_(place),
      place_(place) {}

ProcessGroupNCCL::NCCLTask::~NCCLTask() {}

bool ProcessGroupNCCL::NCCLTask::IsCompleted() { return comm_event_.Query(); }

void ProcessGroupNCCL::NCCLTask::UpdateWaitChain(
    const phi::DeviceContext& ctx) {
  comm_event_.Record(&ctx);
}

// TODO(sheniang03): Add timeout for wait, now timeout unused
bool ProcessGroupNCCL::NCCLTask::Wait(std::chrono::milliseconds timeout) {
  // Warning here when use calc stream but also invoke waiting explicitly.
  if (UseCalcStream()) {
    VLOG(3) << "Warning: The communication is on calc stream, wait here is "
               "useless.";
    return true;
  }

  const auto* calc_ctx = platform::DeviceContextPool::Instance().Get(place_);
  comm_event_.Wait(platform::Place2DeviceType(place_), calc_ctx);

  if (FLAGS_nccl_blocking_wait) {
    // NOTE(shenliang03): It will block host for sync
    while (!IsCompleted()) {
      std::this_thread::sleep_for(std::chrono::milliseconds(kWaitBlockTImeout));
    }
64
  }
65 66 67 68 69 70 71 72 73 74

  if (barrier_) {
    // If we use the work to do barrier, we should block cpu
#ifdef PADDLE_WITH_CUDA
    PADDLE_ENFORCE_GPU_SUCCESS(cudaDeviceSynchronize());
#else
    PADDLE_ENFORCE_GPU_SUCCESS(hipDeviceSynchronize());
#endif
  }
  return true;
75 76
}

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
// Same as Wait
void ProcessGroupNCCL::NCCLTask::Synchronize() { Wait(kWaitTimeout); }

ProcessGroupNCCL::ProcessGroupNCCL(const std::shared_ptr<Store>& store,
                                   int rank,
                                   int size,
                                   const platform::Place& place,
                                   int gid)
    : ProcessGroupStream(rank, size, place, gid), store_(store) {
  platform::SetDeviceId(place_.device);
}

void ProcessGroupNCCL::GroupStart() {
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
}

void ProcessGroupNCCL::GroupEnd() {
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
}

const phi::DeviceContext& ProcessGroupNCCL::GetDeviceContext(
    const Place& place) const {
  return GetDeviceContext(place, /*use_calc_stream*/ false);
}

const phi::DeviceContext& ProcessGroupNCCL::GetDeviceContext(
    const Place& place, bool use_calc_stream) const {
  const std::string& key = GetKeyFromPlace(place);
  if (use_calc_stream) {
    const auto& iter = place_to_calc_ctx_.find(key);
    return *iter->second;
  } else {
    const auto& iter = place_to_comm_ctx_.find(key);
    PADDLE_ENFORCE_NE(
        iter,
        place_to_comm_ctx_.end(),
        platform::errors::NotFound(
            "Cannot find the device context in this process group."));
    return *iter->second;
  }
}

ncclComm_t ProcessGroupNCCL::NCCLComm(const Place& place) const {
  const std::string& key = GetKeyFromPlace(place);
  const auto& iter = place_to_comm_ctx_.find(key);
  PADDLE_ENFORCE_NE(
      iter,
      place_to_comm_ctx_.end(),
      platform::errors::NotFound(
          "Cannot find the NCCL commmunicator in this process group."));
  return iter->second->nccl_comm();
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    bool sync_op,
    bool use_calc_stream) {
  return Collective(
      out_tensor,
      in_tensor,
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        return platform::dynload::ncclAllGather(
            input.data(),
            output->data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            comm,
            stream);
      },
      CommType::ALLGATHER,
      sync_op,
      use_calc_stream);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllReduce(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    const AllreduceOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  return Collective(
      out_tensor,
      in_tensor,
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        return platform::dynload::ncclAllReduce(
            input.data(),
            output->data(),
            input.numel(),
            platform::ToNCCLDataType(input.type()),
            ToNCCLRedType(opts.reduce_op),
            comm,
            stream);
      },
      CommType::ALLREDUCE,
      sync_op,
      use_calc_stream);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Barrier(
    const BarrierOptions& opts) {
  auto allocator = std::unique_ptr<phi::Allocator>(
      new paddle::experimental::DefaultAllocator(place_));
  phi::DenseTensorMeta meta(phi::DataType::FLOAT32, phi::DDim{1});
  phi::DenseTensor barrier_tensor{allocator.get(), meta};

  auto task = AllReduce(&barrier_tensor,
                        barrier_tensor,
                        {},
                        /*sync_op*/ true,
                        /*use_calc_stream*/ false);
  auto nccl_task = dynamic_cast<NCCLTask*>(task.get());
  nccl_task->barrier_ = true;
  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Broadcast(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    const BroadcastOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  return Collective(
      out_tensor,
      in_tensor,
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        int root = opts.source_rank + opts.source_root;
        return platform::dynload::ncclBroadcast(
            input.data(),
            output->data(),
            input.numel(),
            platform::ToNCCLDataType(input.type()),
            root,
            comm,
            stream);
      },
      CommType::BROADCAST,
      sync_op,
      use_calc_stream);
225 226
}

227
std::shared_ptr<ProcessGroupNCCL::NCCLTask> ProcessGroupNCCL::CreateTask(
228
    const Place& place,
229 230 231 232 233
    int rank,
    CommType comm_type,
    bool is_sync,
    bool use_calc_stream) {
  return std::make_shared<ProcessGroupNCCL::NCCLTask>(
234
      place, rank, comm_type, is_sync, use_calc_stream);
235 236
}

237 238 239 240 241 242 243 244 245 246 247 248
void ProcessGroupNCCL::BroadcastUniqueNCCLID(ncclUniqueId* nccl_id) {
  const std::string key =
      "ProcessGroupNCCL/nccl_ids/" + std::to_string(gid_) + "/0";
  if (rank_ == 0) {
    std::vector<uint8_t> nccl_id_wrapper(
        reinterpret_cast<uint8_t*>(nccl_id),
        reinterpret_cast<uint8_t*>(nccl_id) + NCCL_UNIQUE_ID_BYTES);
    store_->set(key, nccl_id_wrapper);
  } else {
    const auto& nccl_id_wrapper = store_->get(key);
    std::memcpy(nccl_id, nccl_id_wrapper.data(), nccl_id_wrapper.size());
  }
249 250
}

251 252 253 254 255 256 257
void ProcessGroupNCCL::CreateNCCLEnvCache(const Place& place,
                                          const std::string& place_key) {
  ncclUniqueId nccl_id;
  if (rank_ == 0) {
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetUniqueId(&nccl_id));
  }
  BroadcastUniqueNCCLID(&nccl_id);
258

259 260 261
  VLOG(3) << "init nccl rank: " << rank_ << ", nranks: " << size_
          << ", place: " << place_key
          << ", nccl uniqueid: " << SerializeNCCLUniqueId(nccl_id);
262

263 264 265 266 267 268 269 270 271 272 273 274 275 276
  calc_event_ = std::make_shared<platform::DeviceEvent>(place);
  auto* calc_ctx = static_cast<phi::GPUContext*>(
      platform::DeviceContextPool::Instance().Get(place));
  auto comm_ctx = std::make_unique<phi::GPUContext>(place);
  ncclComm_t nccl_comm;
  NCCLCHECK(platform::dynload::ncclCommInitRank(
      &nccl_comm, GetSize(), nccl_id, GetRank()));
  comm_ctx->set_nccl_comm(nccl_comm);

  place_to_calc_ctx_[place_key] = calc_ctx;
  place_to_comm_ctx_[place_key] = std::move(comm_ctx);

  // TODO(sunyilun): for compatibility, will be removed later
  places_to_ctx_[place_key] = {place_to_comm_ctx_[place_key].get()};
277 278
}

279 280 281 282 283 284 285
void ProcessGroupNCCL::SyncCalcStream(
    const Place& place, const std::shared_ptr<platform::DeviceEvent>& event) {
  const std::string& key = GetKeyFromPlace(place);
  const auto* calc_ctx = place_to_calc_ctx_[key];
  const auto* comm_ctx = place_to_comm_ctx_[key].get();
  event->Record(calc_ctx);
  event->Wait(platform::Place2DeviceType(place), comm_ctx);
286 287
}

288 289 290 291 292 293 294 295 296 297 298 299 300
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    Fn fn,
    CommType comm_type,
    bool sync_op,
    bool use_calc_stream) {
  const auto& place = in_tensor.place();
  const auto& key = GetKeyFromPlace(place);

  if (!calc_event_) {
    CreateNCCLEnvCache(place, key);
301 302
  }

303 304 305
  if (!use_calc_stream) {
    SyncCalcStream(place, calc_event_);
  }
306

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
  auto task = CreateTask(place, rank_, comm_type, sync_op, use_calc_stream);

  const auto* calc_ctx = place_to_calc_ctx_[key];
  const auto& comm_ctx = place_to_comm_ctx_[key];
  auto nccl_stream = use_calc_stream ? calc_ctx->stream() : comm_ctx->stream();
  fn(out_tensor, in_tensor, comm_ctx->nccl_comm(), nccl_stream);

  if (!use_calc_stream) {
    if (FLAGS_use_stream_safe_cuda_allocator) {
      memory::RecordStream(in_tensor.Holder(), nccl_stream);
    }
    task->comm_event_.Record(comm_ctx.get());
  }

  return task;
322 323
}

324
void ProcessGroupNCCL::CheckSplitSizes(std::vector<int64_t>* split_sizes,
325
                                       std::vector<int64_t> tensor_shape) {
326
  int64_t len_size = (*split_sizes).size();
327 328 329 330 331 332
  if (len_size == 0) {
    PADDLE_ENFORCE_EQ(tensor_shape[0] % size_ == 0,
                      true,
                      platform::errors::InvalidArgument(
                          "Tensor's dim[0] must be divisible by group size "
                          "when split_sizes not given."));
333 334 335 336
    (*split_sizes)
        .insert((*split_sizes).end(),
                size_,
                static_cast<int64_t>(tensor_shape[0] / size_));
337 338 339 340 341 342 343
  } else {
    PADDLE_ENFORCE_EQ(
        len_size == size_,
        true,
        platform::errors::InvalidArgument(
            "The length of split_sizes must be equal to group size."));
    auto sum_size = std::accumulate(
344
        (*split_sizes).begin(), (*split_sizes).end(), static_cast<int64_t>(0));
345 346 347 348 349 350 351 352
    PADDLE_ENFORCE_EQ(
        sum_size == tensor_shape[0],
        true,
        platform::errors::InvalidArgument(
            "The sum of split_sizes must be equal to tensor's dim[0]."));
  }
}

353 354 355 356 357 358 359 360 361
// TODO(sunyilun): methods below will be removed later
void SyncDefaultStream(const std::vector<Place>& places,
                       const std::shared_ptr<platform::DeviceEvent>& nccl_event,
                       std::vector<phi::GPUContext*>& dev_ctx) {  // NOLINT
  for (size_t i = 0; i < places.size(); ++i) {
    auto* default_ctx = static_cast<phi::GPUContext*>(
        platform::DeviceContextPool::Instance().Get(places[i]));
    nccl_event->Record(default_ctx);
    nccl_event->Wait(platform::Place2DeviceType(places[i]), dev_ctx[i]);
B
Baibaifan 已提交
362
  }
363 364
}

365 366 367 368 369 370 371
std::shared_ptr<ProcessGroupNCCL::NCCLTask> ProcessGroupNCCL::CreateTask(
    std::vector<Place> places,
    int rank,
    CommType comm_type,
    const std::vector<phi::DenseTensor>& inputs) {
  return std::make_shared<ProcessGroupNCCL::NCCLTask>(
      places, rank, comm_type, inputs);
372
}
373

374 375 376 377 378 379 380 381 382
std::shared_ptr<ProcessGroupNCCL::NCCLTask> ProcessGroupNCCL::CreateTask(
    const std::vector<Place>& places,
    int rank,
    CommType comm_type,
    const std::vector<phi::DenseTensor>& inputs,
    bool is_sync,
    bool use_calc_stream) {
  return std::make_shared<ProcessGroupNCCL::NCCLTask>(
      places, rank, comm_type, inputs, is_sync, use_calc_stream);
383 384
}

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
ProcessGroupNCCL::NCCLTask::NCCLTask(
    const std::vector<Place>& places,
    int rank,
    CommType CommType,
    const std::vector<phi::DenseTensor>& inputs)
    : TaskStream(rank, inputs, CommType),
      comm_event_(places[0]),
      place_(places[0]) {}

ProcessGroupNCCL::NCCLTask::NCCLTask(
    const std::vector<Place>& places,
    int rank,
    CommType comm_type,
    const std::vector<phi::DenseTensor>& inputs,
    bool sync_op,
    bool use_calc_stream)
    : TaskStream(rank, inputs, comm_type, sync_op, use_calc_stream),
      comm_event_(places[0]),
      place_(places[0]) {}

405 406 407
// create NCCLManager cache for places_key
void ProcessGroupNCCL::CreateNCCLManagerCache(
    const std::string& places_key, const std::vector<Place>& places) {
408 409
  PADDLE_ENFORCE_EQ(places_key.empty(),
                    false,
410 411 412 413
                    platform::errors::PreconditionNotMet(
                        "Not able to create/get the NCCL Communicator since "
                        "the GPU place are not known"));

414
  ncclUniqueId nccl_id;
415 416 417
  if (rank_ == 0) {
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetUniqueId(&nccl_id));
  }
418
  BroadcastUniqueNCCLID(&nccl_id);
419

420 421
  VLOG(3) << "init nccl rank: " << rank_ << ", nranks: " << size_
          << ", place: " << places_key
422 423
          << ", nccl uniqueid: " << SerializeNCCLUniqueId(nccl_id);

L
Leo Chen 已提交
424
  std::vector<std::unique_ptr<phi::GPUContext>> dev_ctx;
425 426
  dev_ctx.resize(places.size());

427 428 429
  std::vector<phi::GPUContext*> dev_ctx_raw;
  dev_ctx_raw.resize(places.size());

430 431 432 433
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());

  for (size_t i = 0; i < places.size(); ++i) {
    platform::CUDADeviceGuard guard(places[i]);
434

L
Leo Chen 已提交
435
    dev_ctx[i].reset(new phi::GPUContext(places[i]));
436 437 438 439 440 441
    ncclComm_t nccl_comm;
    NCCLCHECK(platform::dynload::ncclCommInitRank(
        &nccl_comm, GetSize(), nccl_id, GetRank()));
    dev_ctx[i]->set_nccl_comm(nccl_comm);

    dev_ctx_raw[i] = dev_ctx[i].get();
442 443 444
  }

  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
445
  calc_event_ = std::make_shared<platform::DeviceEvent>(places[0]);
446

447 448 449 450
  // TODO(sunyilun): for compatibility, will be removed later
  place_to_calc_ctx_[places_key] = static_cast<phi::GPUContext*>(
      platform::DeviceContextPool::Instance().Get(places[0]));
  place_to_comm_ctx_[places_key] = std::move(dev_ctx[0]);
451 452

  // These caches will be useful to process sync/wait/communicate
453
  places_to_ctx_.emplace(places_key, std::move(dev_ctx_raw));
454 455
}

456 457 458 459 460 461 462 463 464 465 466 467 468
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
    std::vector<phi::DenseTensor>& inputs,
    std::vector<phi::DenseTensor>& outputs,
    Fn fn,
    CommType comm_type,
    bool sync_op,
    bool use_calc_stream) {
  const auto& places = GetPlaceList(inputs);
  const auto& key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
469
    if (!calc_event_) {
470 471 472 473
      CreateNCCLManagerCache(key, places);
    }
  }

474
  if (!use_calc_stream) {
475
    SyncDefaultStream(places, calc_event_, places_to_ctx_[key]);
476
  }
477

478 479
  auto task =
      CreateTask(places, rank_, comm_type, inputs, sync_op, use_calc_stream);
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497

  platform::CUDADeviceGuard cuda_guard;

  {
    platform::NCCLGroupGuard nccl_guard;
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);

      gpuStream_t nccl_stream;
      if (use_calc_stream) {
        nccl_stream =
            static_cast<phi::GPUContext*>(
                platform::DeviceContextPool::Instance().Get(places[i]))
                ->stream();
      } else {
        nccl_stream = places_to_ctx_[key][i]->stream();
      }

498 499 500 501
      fn(inputs[i],
         outputs[i],
         places_to_ctx_[key][i]->nccl_comm(),
         nccl_stream);
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
    }
  }

  if (FLAGS_use_stream_safe_cuda_allocator) {
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);

      gpuStream_t nccl_stream;
      if (use_calc_stream) {
        nccl_stream =
            static_cast<phi::GPUContext*>(
                platform::DeviceContextPool::Instance().Get(places[i]))
                ->stream();
      } else {
        nccl_stream = places_to_ctx_[key][i]->stream();
      }

      memory::RecordStream(inputs[i].Holder(), nccl_stream);
    }
  }

  // Adding stream event dependency only when use comm stream
  if (!use_calc_stream) {
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
527
      task->comm_event_.Record(places_to_ctx_[key][i]);
528 529 530 531 532 533
    }
  }

  return task;
}

534 535
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
536
    std::vector<phi::DenseTensor>& inputs,
537 538 539
    std::vector<phi::DenseTensor>& outputs,
    Fn fn,
    CommType op_type) {
540 541 542 543 544
  const auto places = GetPlaceList(inputs);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
545
    if (!calc_event_) {
546 547 548 549
      CreateNCCLManagerCache(key, places);
    }
  }

550
  SyncDefaultStream(places, calc_event_, places_to_ctx_[key]);
551 552 553 554 555 556

  auto task = CreateTask(places, rank_, op_type, inputs);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

S
ShenLiang 已提交
557 558
  {
    platform::NCCLGroupGuard nccl_guard;
559 560
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
S
ShenLiang 已提交
561
      const auto& nccl_stream = places_to_ctx_[key][i]->stream();
562 563 564 565
      fn(inputs[i],
         outputs[i],
         places_to_ctx_[key][i]->nccl_comm(),
         nccl_stream);
566 567 568
    }
  }

S
ShenLiang 已提交
569
  if (FLAGS_use_stream_safe_cuda_allocator) {
570 571
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
S
ShenLiang 已提交
572 573
      memory::RecordStream(inputs[i].Holder(),
                           places_to_ctx_[key][i]->stream());
574 575 576 577 578
    }
  }

  for (size_t i = 0; i < inputs.size(); ++i) {
    cuda_guard.SetDevice(places[i]);
579
    task->comm_event_.Record(places_to_ctx_[key][i]);
580 581 582 583
  }
  return task;
}

584 585
template <typename Fn>
void ProcessGroupNCCL::Collective(const phi::DenseTensor* in,
586 587
                                  phi::DenseTensor* out,
                                  Fn fn,
588 589 590
                                  CommType op_type) {
  std::vector<Place> places;
  places.push_back(in->place());
591
  const std::string& key = GetKeyFromPlaces(places);
592 593 594

  {
    std::lock_guard<std::mutex> lock(mutex_);
595
    if (!calc_event_) {
596 597 598 599
      CreateNCCLManagerCache(key, places);
    }
  }

600
  SyncDefaultStream(places, calc_event_, places_to_ctx_[key]);
601 602 603 604 605 606 607 608 609 610 611 612 613

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

  if (FLAGS_use_stream_safe_cuda_allocator) {
    cuda_guard.SetDevice(places[0]);
    memory::RecordStream(in->Holder(), places_to_ctx_[key][0]->stream());
  }

  {
    platform::NCCLGroupGuard nccl_guard;
    cuda_guard.SetDevice(places[0]);
    const auto& nccl_stream = places_to_ctx_[key][0]->stream();
614
    fn(in, out, places_to_ctx_[key][0]->nccl_comm(), nccl_stream);
615 616 617 618 619
  }

  cuda_guard.SetDevice(places[0]);
}

620 621 622 623 624 625 626 627 628 629 630 631 632
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
    std::vector<phi::DenseTensor>& tensors,
    Fn fn,
    int dst_rank,
    CommType op_type,
    bool sync_op,
    bool use_calc_stream) {
  const auto& places = GetPlaceList(tensors);
  const auto& key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
633
    if (!calc_event_) {
634 635 636 637 638
      CreateNCCLManagerCache(key, places);
    }
  }

  if (!use_calc_stream) {
639
    SyncDefaultStream(places, calc_event_, places_to_ctx_[key]);
640 641 642 643 644 645 646
  }

  auto task =
      CreateTask(places, rank_, op_type, tensors, sync_op, use_calc_stream);

  platform::CUDADeviceGuard cuda_guard;

647 648
  {
    platform::NCCLGroupGuard nccl_guard;
649 650 651 652 653 654 655 656 657 658 659
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      gpuStream_t nccl_stream;
      if (use_calc_stream) {
        nccl_stream =
            static_cast<phi::GPUContext*>(
                platform::DeviceContextPool::Instance().Get(places[i]))
                ->stream();
      } else {
        nccl_stream = places_to_ctx_[key][i]->stream();
      }
660 661 662 663
      fn(tensors[i],
         places_to_ctx_[key][i]->nccl_comm(),
         nccl_stream,
         dst_rank);
664 665 666
    }
  }

667
  if (FLAGS_use_stream_safe_cuda_allocator) {
668 669 670 671 672 673 674 675 676 677 678
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      gpuStream_t nccl_stream;
      if (use_calc_stream) {
        nccl_stream =
            static_cast<phi::GPUContext*>(
                platform::DeviceContextPool::Instance().Get(places[i]))
                ->stream();
      } else {
        nccl_stream = places_to_ctx_[key][i]->stream();
      }
679
      memory::RecordStream(tensors[i].Holder(), nccl_stream);
680 681 682 683 684 685
    }
  }

  if (!use_calc_stream) {
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
686
      task->comm_event_.Record(places_to_ctx_[key][i]);
687 688 689 690 691 692
    }
  }

  return task;
}

B
Baibaifan 已提交
693 694
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
695 696 697
    std::vector<phi::DenseTensor>& tensors,
    Fn fn,
    int dst_rank,
698
    CommType op_type) {
B
Baibaifan 已提交
699 700 701 702 703
  const auto places = GetPlaceList(tensors);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
704
    if (!calc_event_) {
B
Baibaifan 已提交
705 706 707 708
      CreateNCCLManagerCache(key, places);
    }
  }

709
  SyncDefaultStream(places, calc_event_, places_to_ctx_[key]);
B
Baibaifan 已提交
710 711 712 713 714 715

  auto task = CreateTask(places, rank_, op_type, tensors);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

716 717
  {
    platform::NCCLGroupGuard nccl_guard;
B
Baibaifan 已提交
718 719
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
720
      const auto& nccl_stream = places_to_ctx_[key][i]->stream();
721 722 723 724
      fn(tensors[i],
         places_to_ctx_[key][i]->nccl_comm(),
         nccl_stream,
         dst_rank);
B
Baibaifan 已提交
725 726 727
    }
  }

728
  if (FLAGS_use_stream_safe_cuda_allocator) {
B
Baibaifan 已提交
729 730
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
731 732
      memory::RecordStream(tensors[i].Holder(),
                           places_to_ctx_[key][i]->stream());
B
Baibaifan 已提交
733 734 735 736 737
    }
  }

  for (size_t i = 0; i < tensors.size(); ++i) {
    cuda_guard.SetDevice(places[i]);
738
    task->comm_event_.Record(places_to_ctx_[key][i]);
B
Baibaifan 已提交
739 740 741 742
  }
  return task;
}

743
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllReduce(
744
    std::vector<phi::DenseTensor>& in_tensors,
745 746
    std::vector<phi::DenseTensor>& out_tensors,
    const AllreduceOptions& opts) {
747
  PADDLE_ENFORCE_EQ(
748 749
      CheckTensorsInCudaPlace(in_tensors),
      true,
750
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
751
  return Collective(
752 753 754 755 756 757
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
758
        return platform::dynload::ncclAllReduce(
759 760 761
            input.data(),
            output.data(),
            input.numel(),
762
            platform::ToNCCLDataType(input.type()),
763 764 765
            ToNCCLRedType(opts.reduce_op),
            comm,
            stream);
766 767
      },
      CommType::ALLREDUCE);
768 769 770
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Broadcast(
771
    std::vector<phi::DenseTensor>& in_tensors,
772 773
    std::vector<phi::DenseTensor>& out_tensors,
    const BroadcastOptions& opts) {
774
  PADDLE_ENFORCE_EQ(
775 776
      CheckTensorsInCudaPlace(in_tensors),
      true,
777 778
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));

779
  return Collective(
780 781 782 783 784
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
785 786 787 788
          const gpuStream_t& stream) {
        const auto root =
            opts.source_rank * in_tensors.size() + opts.source_root;
        return platform::dynload::ncclBroadcast(
789 790 791 792 793 794 795
            input.data(),
            output.data(),
            input.numel(),
            platform::ToNCCLDataType(input.type()),
            root,
            comm,
            stream);
796 797
      },
      CommType::BROADCAST);
798 799
}

800 801
void CheckTensorsInDifferentDevices(
    const std::vector<phi::DenseTensor>& tensors, const size_t num_devices) {
B
Baibaifan 已提交
802
  PADDLE_ENFORCE_EQ(
803 804
      tensors.size() == 0,
      false,
B
Baibaifan 已提交
805 806
      platform::errors::InvalidArgument("Tensor list must be nonempty."));
  PADDLE_ENFORCE_LE(
807 808
      tensors.size(),
      num_devices,
B
Baibaifan 已提交
809 810 811 812 813 814
      platform::errors::InvalidArgument(
          "Tensor list mustn't be larger than the number of available GPUs."));

  std::set<Place> used_devices;

  for (const auto& t : tensors) {
815 816
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(t.place()),
                      true,
B
Baibaifan 已提交
817 818 819
                      platform::errors::InvalidArgument(
                          "Tensors must be CUDA and dense tensor."));

820
    const auto inserted = used_devices.insert(t.place()).second;
821 822
    PADDLE_ENFORCE_EQ(inserted,
                      true,
B
Baibaifan 已提交
823 824 825 826 827 828
                      platform::errors::InvalidArgument(
                          "Tensors must be on distinct GPU devices."));
  }
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send(
829
    std::vector<phi::DenseTensor>& tensors, int dst_rank) {
B
Baibaifan 已提交
830 831
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

832 833
  auto task = PointToPoint(
      tensors,
834 835 836
      [&](phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream,
837 838
          int dst_rank) {
        return platform::dynload::ncclSend(
839 840 841 842 843 844
            input.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            dst_rank,
            comm,
            stream);
845
      },
846 847
      dst_rank,
      CommType::SEND);
B
Baibaifan 已提交
848 849 850
  return task;
}

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send(
    std::vector<phi::DenseTensor>& tensors,
    int dst_rank,
    bool sync_op,
    bool use_calc_stream) {
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

  auto task = PointToPoint(
      tensors,
      [&](phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream,
          int dst_rank) {
        return platform::dynload::ncclSend(
            input.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            dst_rank,
            comm,
            stream);
      },
      dst_rank,
      CommType::SEND,
      sync_op,
      use_calc_stream);
  return task;
}

B
Baibaifan 已提交
879
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv(
880
    std::vector<phi::DenseTensor>& tensors, int src_rank) {
B
Baibaifan 已提交
881 882
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

883 884
  auto task = PointToPoint(
      tensors,
885 886 887
      [&](phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream,
888 889
          int src_rank) {
        return platform::dynload::ncclRecv(
890 891 892 893 894 895
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(output.dtype()),
            src_rank,
            comm,
            stream);
896
      },
897 898
      src_rank,
      CommType::RECV);
899 900 901
  return task;
}

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv(
    std::vector<phi::DenseTensor>& tensors,
    int src_rank,
    bool sync_op,
    bool use_calc_stream) {
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

  auto task = PointToPoint(
      tensors,
      [&](phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream,
          int src_rank) {
        return platform::dynload::ncclRecv(
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(output.dtype()),
            src_rank,
            comm,
            stream);
      },
      src_rank,
      CommType::RECV,
      sync_op,
      use_calc_stream);
  return task;
}

930
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send_Partial(
931
    phi::DenseTensor& tensors, int dst_rank, int64_t offset, int64_t length) {
932 933 934 935 936
  // CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

  phi::DenseTensor flatten_tensor;
  flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()});

937 938
  std::vector<phi::DenseTensor> shared_tensors{
      flatten_tensor.Slice(offset, offset + length)};
939

940 941
  auto task = PointToPoint(
      shared_tensors,
942 943 944
      [&](phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream,
945 946
          int dst_rank) {
        return platform::dynload::ncclSend(
947 948 949 950 951 952
            input.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            dst_rank,
            comm,
            stream);
953
      },
954 955
      dst_rank,
      CommType::SEND);
956 957 958
  return task;
}

959 960 961
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send_Partial(
    phi::DenseTensor& tensors,
    int dst_rank,
962 963
    int64_t offset,
    int64_t length,
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
    bool sync_op,
    bool use_calc_stream) {
  phi::DenseTensor flatten_tensor;
  flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()});

  std::vector<phi::DenseTensor> shared_tensors{
      flatten_tensor.Slice(offset, offset + length)};

  auto task = PointToPoint(
      shared_tensors,
      [&](phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream,
          int dst_rank) {
        return platform::dynload::ncclSend(
            input.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            dst_rank,
            comm,
            stream);
      },
      dst_rank,
      CommType::SEND,
      sync_op,
      use_calc_stream);
  return task;
}

993
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv_Partial(
994
    phi::DenseTensor& tensors, int src_rank, int64_t offset, int64_t length) {
995 996 997 998 999
  // phi::DenseTensor shared_input = tensors.Slice(offset, offset+length);

  phi::DenseTensor flatten_tensor;
  flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()});

1000 1001
  std::vector<phi::DenseTensor> shared_tensors{
      flatten_tensor.Slice(offset, offset + length)};
1002

1003 1004
  auto task = PointToPoint(
      shared_tensors,
1005 1006 1007
      [&](phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream,
1008 1009
          int src_rank) {
        return platform::dynload::ncclRecv(
1010 1011 1012 1013 1014 1015
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(output.dtype()),
            src_rank,
            comm,
            stream);
1016
      },
1017 1018
      src_rank,
      CommType::RECV);
B
Baibaifan 已提交
1019 1020 1021
  return task;
}

1022 1023 1024
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv_Partial(
    phi::DenseTensor& tensors,
    int src_rank,
1025 1026
    int64_t offset,
    int64_t length,
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
    bool sync_op,
    bool use_calc_stream) {
  phi::DenseTensor flatten_tensor;
  flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()});

  std::vector<phi::DenseTensor> shared_tensors{
      flatten_tensor.Slice(offset, offset + length)};

  auto task = PointToPoint(
      shared_tensors,
      [&](phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream,
          int src_rank) {
        return platform::dynload::ncclRecv(
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(output.dtype()),
            src_rank,
            comm,
            stream);
      },
      src_rank,
      CommType::RECV,
      sync_op,
      use_calc_stream);
  return task;
}

1056
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather(
1057 1058
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
1059
  PADDLE_ENFORCE_EQ(
1060 1061
      CheckTensorsInCudaPlace(in_tensors),
      true,
1062 1063
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
1064 1065
      CheckTensorsInCudaPlace(out_tensors),
      true,
1066
      platform::errors::InvalidArgument("All outputs should be in CudaPlace."));
1067
  return Collective(
1068 1069 1070 1071 1072 1073
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
1074
        return platform::dynload::ncclAllGather(
1075 1076 1077 1078 1079 1080
            input.data(),
            output.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            comm,
            stream);
1081 1082
      },
      CommType::ALLGATHER);
1083 1084
}

1085 1086
void* GetPointerByOffset(void* raw_pointer,
                         size_t offset,
1087 1088 1089 1090 1091 1092 1093
                         experimental::DataType type) {
  if (type == experimental::DataType::FLOAT32) {
    return reinterpret_cast<void*>(reinterpret_cast<float*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::FLOAT64) {
    return reinterpret_cast<void*>(reinterpret_cast<double*>(raw_pointer) +
                                   offset);
1094 1095 1096
  } else if (type == experimental::DataType::FLOAT16) {
    return reinterpret_cast<void*>(reinterpret_cast<int16_t*>(raw_pointer) +
                                   offset);
1097 1098 1099 1100 1101 1102
  } else if (type == experimental::DataType::INT32) {
    return reinterpret_cast<void*>(reinterpret_cast<int32_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::INT64) {
    return reinterpret_cast<void*>(reinterpret_cast<int64_t*>(raw_pointer) +
                                   offset);
1103 1104 1105 1106 1107 1108 1109 1110
  } else if (type == experimental::DataType::INT8) {
    return reinterpret_cast<void*>(reinterpret_cast<int8_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::UINT8) {
    return reinterpret_cast<void*>(reinterpret_cast<uint8_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::BOOL) {
    return reinterpret_cast<void*>(reinterpret_cast<bool*>(raw_pointer) +
1111
                                   offset);
1112 1113 1114
  } else if (type == experimental::DataType::BFLOAT16) {
    return reinterpret_cast<void*>(reinterpret_cast<uint16_t*>(raw_pointer) +
                                   offset);
1115 1116 1117 1118
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "This datatype in nccl is not supported."));
  }
1119
  return nullptr;
1120 1121
}

1122 1123 1124
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather_Partial(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
1125 1126
    int64_t offset,
    int64_t length) {
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All outputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        return platform::dynload::ncclAllGather(
            GetPointerByOffset(input.data(), offset, input.dtype()),
            output.data(),
            length,
            platform::ToNCCLDataType(input.dtype()),
            comm,
            stream);
      },
      CommType::ALLGATHER);
}

1153 1154 1155
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather_Partial(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
1156 1157
    int64_t offset,
    int64_t length,
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
    bool sync_op,
    bool use_calc_stream) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All outputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        return platform::dynload::ncclAllGather(
            GetPointerByOffset(input.data(), offset, input.dtype()),
            output.data(),
            length,
            platform::ToNCCLDataType(input.dtype()),
            comm,
            stream);
      },
      CommType::ALLGATHER,
      sync_op,
      use_calc_stream);
}

1188
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
1189 1190
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
1191
  PADDLE_ENFORCE_EQ(
1192 1193
      CheckTensorsInCudaPlace(in_tensors),
      true,
1194 1195
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
1196 1197
      CheckTensorsInCudaPlace(out_tensors),
      true,
1198 1199
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
1200 1201 1202 1203 1204
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
1205 1206 1207 1208 1209
          const gpuStream_t& stream) {
        size_t offset = 0;
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
1210
              GetPointerByOffset(input.data(), offset, input.dtype()),
1211 1212 1213 1214 1215
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
1216
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
1217
              GetPointerByOffset(output.data(), offset, input.dtype()),
1218 1219 1220 1221 1222
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
1223
          offset += input.numel() / size_;
1224 1225 1226
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
1227 1228 1229
      CommType::ALLTOALL);
}

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    bool sync_op,
    bool use_calc_stream) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        size_t offset = 0;
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
              GetPointerByOffset(input.data(), offset, input.dtype()),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              GetPointerByOffset(output.data(), offset, input.dtype()),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          offset += input.numel() / size_;
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
      CommType::ALLTOALL,
      sync_op,
      use_calc_stream);
}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll_Single(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    std::vector<int64_t>& in_sizes,
    std::vector<int64_t>& out_sizes) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        PADDLE_ENFORCE_EQ(input.dtype() == output.dtype(),
                          true,
                          platform::errors::InvalidArgument(
                              "The dtypes of input and output must be equal."));

        std::vector<int64_t> in_dims = phi::vectorize(input.dims());
        std::vector<int64_t> out_dims = phi::vectorize(output.dims());
1303 1304
        CheckSplitSizes(&in_sizes, in_dims);
        CheckSplitSizes(&out_sizes, out_dims);
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335

        size_t in_offset = 0, out_offset = 0;
        size_t in_length = 0, out_length = 0;
        size_t in_row_size = input.numel() / in_dims[0];
        size_t out_row_size = output.numel() / out_dims[0];

        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          in_length = in_sizes[i] * in_row_size;
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
              GetPointerByOffset(input.data(), in_offset, input.dtype()),
              in_length,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          in_offset += in_length;

          out_length = out_sizes[i] * out_row_size;
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              GetPointerByOffset(output.data(), out_offset, input.dtype()),
              out_length,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          out_offset += out_length;
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
      CommType::ALLTOALL_SINGLE);
1336 1337
}

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAllSingle(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    std::vector<int64_t>& in_sizes,
    std::vector<int64_t>& out_sizes,
    bool sync_op,
    bool use_calc_stream) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        PADDLE_ENFORCE_EQ(input.dtype() == output.dtype(),
                          true,
                          platform::errors::InvalidArgument(
                              "The dtypes of input and output must be equal."));

        std::vector<int64_t> in_dims = phi::vectorize(input.dims());
        std::vector<int64_t> out_dims = phi::vectorize(output.dims());
        CheckSplitSizes(&in_sizes, in_dims);
        CheckSplitSizes(&out_sizes, out_dims);

        size_t in_offset = 0, out_offset = 0;
        size_t in_length = 0, out_length = 0;
        size_t in_row_size = input.numel() / in_dims[0];
        size_t out_row_size = output.numel() / out_dims[0];

        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          in_length = in_sizes[i] * in_row_size;
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
              GetPointerByOffset(input.data(), in_offset, input.dtype()),
              in_length,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          in_offset += in_length;

          out_length = out_sizes[i] * out_row_size;
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              GetPointerByOffset(output.data(), out_offset, input.dtype()),
              out_length,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          out_offset += out_length;
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
      CommType::ALLTOALL_SINGLE,
      sync_op,
      use_calc_stream);
}

1404
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Reduce(
1405
    std::vector<phi::DenseTensor>& in_tensors,
1406 1407
    std::vector<phi::DenseTensor>& out_tensors,
    const ReduceOptions& opts) {
1408
  PADDLE_ENFORCE_EQ(
1409 1410
      CheckTensorsInCudaPlace(in_tensors),
      true,
1411 1412
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
1413 1414 1415 1416 1417 1418
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
1419
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduce(
1420 1421 1422
            input.data(),
            output.data(),
            input.numel(),
1423
            platform::ToNCCLDataType(input.dtype()),
1424 1425 1426 1427
            ToNCCLRedType(opts.reduce_op),
            opts.root_rank,
            comm,
            stream));
1428 1429 1430 1431
      },
      CommType::REDUCE);
}

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Reduce(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    const ReduceOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduce(
            input.data(),
            output.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            ToNCCLRedType(opts.reduce_op),
            opts.root_rank,
            comm,
            stream));
      },
      CommType::REDUCE,
      sync_op,
      use_calc_stream);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::ReduceScatter(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    const ReduceScatterOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        if (FLAGS_use_stream_safe_cuda_allocator) {
          platform::CUDADeviceGuard cuda_guard;
          cuda_guard.SetDevice(output.place());
          memory::RecordStream(output.Holder(), stream);
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduceScatter(
            input.data(),
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(input.dtype()),
            ToNCCLRedType(opts.reduce_op),
            comm,
            stream));
      },
      CommType::REDUCE_SCATTER,
      sync_op,
      use_calc_stream);
}

1496
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
1497
    std::vector<phi::DenseTensor>& in_tensors,
1498 1499
    std::vector<phi::DenseTensor>& out_tensors,
    const ScatterOptions& opts) {
1500
  PADDLE_ENFORCE_EQ(
1501 1502
      CheckTensorsInCudaPlace(in_tensors),
      true,
1503 1504
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
1505 1506
      CheckTensorsInCudaPlace(out_tensors),
      true,
1507 1508
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
1509 1510 1511 1512 1513
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
1514 1515 1516 1517 1518 1519
          const gpuStream_t& stream) {
        size_t offset = 0;
        if (rank_ == opts.root_rank) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
          for (auto i = 0; i < size_; i++) {
            PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
1520
                GetPointerByOffset(input.data(), offset, input.dtype()),
1521 1522 1523 1524 1525
                input.numel() / size_,
                platform::ToNCCLDataType(input.dtype()),
                i,
                comm,
                stream));
1526
            offset += input.numel() / size_;
1527 1528
          }
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
1529 1530 1531 1532 1533
              output.data(),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              opts.root_rank,
              comm,
1534 1535 1536 1537
              stream));
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
        } else {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
1538 1539 1540 1541 1542
              output.data(),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              opts.root_rank,
              comm,
1543 1544 1545 1546 1547 1548
              stream));
        }
      },
      CommType::SCATTER);
}

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    const ScatterOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        PADDLE_ENFORCE_EQ(
            output.numel(),
            input.numel() / size_,
            platform::errors::InvalidArgument(
                "Input and output tensors should have the same shape."));
        size_t offset = 0;
        if (rank_ == opts.root_rank) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
          for (auto i = 0; i < size_; i++) {
            PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
                GetPointerByOffset(input.data(), offset, input.dtype()),
                input.numel() / size_,
                platform::ToNCCLDataType(input.dtype()),
                i,
                comm,
                stream));
            offset += input.numel() / size_;
          }
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              output.data(),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              opts.root_rank,
              comm,
              stream));
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
        } else {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              output.data(),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              opts.root_rank,
              comm,
              stream));
        }
      },
      CommType::SCATTER,
      sync_op,
      use_calc_stream);
}

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::_ReduceScatterBase(
    phi::DenseTensor& out_tensor,
    phi::DenseTensor& in_tensor,
    const ReduceScatterOptions& opts) {
  // auto tensor = out_tensors.back();
  PADDLE_ENFORCE_EQ(
      out_tensor.dtype(),
      in_tensor.dtype(),
      platform::errors::InvalidArgument(
          "Input tensor and output tensor should be same dtype."));

  PADDLE_ENFORCE_EQ(
      out_tensor.numel() * size_,
      in_tensor.numel(),
      platform::errors::InvalidArgument("input tensor must be the same size as "
                                        "output tensor size times world_size"));

  auto inputs = std::vector<phi::DenseTensor>{in_tensor};
  auto outputs = std::vector<phi::DenseTensor>{out_tensor};

  return Collective(
      inputs,
      outputs,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        if (FLAGS_use_stream_safe_cuda_allocator) {
          platform::CUDADeviceGuard cuda_guard;
          cuda_guard.SetDevice(output.place());
          memory::RecordStream(output.Holder(), stream);
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduceScatter(
            input.data(),
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(input.dtype()),
            ToNCCLRedType(opts.reduce_op),
            comm,
            stream));
      },
      CommType::REDUCE_SCATTER);
}

1655 1656
}  //  namespace distributed
}  //  namespace paddle