fused_gemm_epilogue_op.cc 15.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

16
#include "paddle/fluid/operators/fused/fused_gemm_epilogue_op.h"
17

18 19 20 21 22
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"

namespace paddle {
namespace operators {
23
using Tensor = phi::DenseTensor;
24 25 26 27 28 29 30 31 32

class FusedGemmEpilogueOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FusedGemmEpilogueOp");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "FusedGemmEpilogueOp");
33 34 35 36
    OP_INOUT_CHECK(
        ctx->HasInput("Bias"), "Output", "Bias", "FusedGemmEpilogueOp");
    OP_INOUT_CHECK(
        ctx->HasOutput("Out"), "Output", "Out", "FusedGemmEpilogueOp");
37 38 39 40 41 42 43 44 45

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
    auto bias_dims = ctx->GetInputDim("Bias");

    auto trans_x = ctx->Attrs().Get<bool>("trans_x");
    auto trans_y = ctx->Attrs().Get<bool>("trans_y");

    PADDLE_ENFORCE_EQ(
46 47
        y_dims.size(),
        2,
48 49 50 51 52 53
        platform::errors::InvalidArgument(
            "The Input tensor Y's dimension of FusedGemmEpilogueOp "
            " should be 2, but got %d.",
            y_dims.size()));

    PADDLE_ENFORCE_GE(
54 55
        x_dims.size(),
        2,
56 57 58 59 60 61
        platform::errors::InvalidArgument(
            "The Input tensor X's dimension of FusedGemmEpilogueOp "
            " should be >= 2, but got %d.",
            x_dims.size()));

    PADDLE_ENFORCE_EQ(
62 63
        bias_dims.size(),
        1,
64 65 66 67 68
        platform::errors::InvalidArgument(
            "The Input tensor bias's dimension of FusedGemmEpilogueOp "
            " should be == 1, but got %d.",
            bias_dims.size()));

69 70
    PADDLE_ENFORCE_EQ(bias_dims[0],
                      trans_y ? y_dims[0] : y_dims[1],
71 72 73 74
                      platform::errors::InvalidArgument(
                          "The Input tensor bias's dimension 0"
                          " should be == Y[-1], but got bias's shape = [%s] "
                          "and Y's shape = [%s]",
75 76
                          bias_dims,
                          y_dims));
77 78 79 80 81 82 83 84

    auto x_mat_dims =
        phi::flatten_to_2d(x_dims, trans_x ? 1 : x_dims.size() - 1);

    int K_from_x = trans_x ? x_mat_dims[0] : x_mat_dims[1];
    int K_from_y = trans_y ? y_dims[1] : y_dims[0];

    PADDLE_ENFORCE_EQ(
85 86
        K_from_x,
        K_from_y,
87 88 89
        platform::errors::InvalidArgument(
            "The last dimension of X should be equal with Y's first dimension."
            "But received X[-1] = [%d], Y[0] = [%d].",
90 91
            K_from_x,
            K_from_y));
92 93 94 95 96 97

    auto activation = ctx->Attrs().Get<std::string>("activation");

    if ((activation != "relu") && (activation != "gelu") &&
        (activation != "none")) {
      PADDLE_ENFORCE_EQ(
98 99
          true,
          false,
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
          platform::errors::InvalidArgument(
              "The activation attribute of fused_gemm_epilogue op should be"
              " one of {\"none\", \"relu\", \"gelu\"}. But received %s."
              "But received activation=%s.",
              activation));
    }

    if (activation == "none" && ctx->HasOutput("ReserveSpace")) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The ReserveSpace would not be used when activation = \"none\""));
    }

    // cublasLt's restriction for auxiliary.
    if (ctx->HasOutput("ReserveSpace") && activation != "none") {
      int min_size_of_n = activation == "relu" ? 128 : 8;
      int N_size = trans_y ? y_dims[0] : y_dims[1];
116 117
      PADDLE_ENFORCE_EQ(N_size % min_size_of_n,
                        0,
118 119 120 121
                        platform::errors::InvalidArgument(
                            "The output dimension N (X(MxK) * Y(KxN) = C(MxN)) "
                            "should be multiple of %d when auxiliary_key given "
                            "and activation=%s, but got N = %d.",
122 123 124
                            min_size_of_n,
                            activation,
                            N_size));
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    }

    std::vector<int64_t> out_dims;
    out_dims.reserve(static_cast<size_t>(x_dims.size()));
    if (trans_x) {
      for (int i = 1; i < x_dims.size(); ++i) out_dims.push_back(x_dims[i]);
    } else {
      for (int i = 0; i < x_dims.size() - 1; ++i) out_dims.push_back(x_dims[i]);
    }

    if (trans_y) {
      out_dims.push_back(y_dims[0]);
    } else {
      out_dims.push_back(y_dims[1]);
    }

    ctx->SetOutputDim("Out", phi::make_ddim(out_dims));
    // Note (Ming Huang): Reserve space of relu is a bit-mask,
    // which cannot pass nan_and_inf checking if shape is set.
    if (activation == "gelu" && ctx->HasOutput("ReserveSpace")) {
      ctx->SetOutputDim("ReserveSpace", phi::make_ddim(out_dims));
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const {
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
  }
};

class FusedGemmEpilogueOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "The input tensor X of Out = Act((X * Y) + Bias).");
    AddInput("Y", "The input tensor Y of Out = Act((X * Y) + Bias).");
    AddInput("Bias", "The input tensor bias of Out = Act((X * Y) + Bias).");

    AddOutput("Out", "The output tensor Out of Out = Act((X * Y) + Bias).");
    AddOutput("ReserveSpace",
167 168 169
              R"DOC(Reserve GPU space to place
        auxiliary data pointer. It is used to pass auxiliary data pointer
        for fused_gemm_epilogue op. If not given (empty string), the
170 171 172 173 174 175
        auxiliary mode would not be enable.)DOC")
        .AsDispensable()
        .AsExtra();

    AddAttr<bool>(
        "trans_x",
176 177 178
        R"DOC((bool, default false), Whether to transpose input tensor X
    or not. The input tensor X coulbe be more than two dimension. When
    set trans_x=true, it would fully reverse X. For instant: X with shpae
179 180 181 182
    [d0, d1, d2, d3] -> [d3, d2, d1, d0].)DOC")
        .SetDefault(false);
    AddAttr<bool>(
        "trans_y",
183 184 185
        R"DOC((bool, default false), Whether to transpose input tensor Y
    or not. The input tensor Y should be two dimension. When
    set trans_y=true, it would transpose Y. For instant: Y with shpae
186 187 188 189 190
    [d0, d1] -> [d1, d0].)DOC")
        .SetDefault(false);

    AddAttr<std::string>(
        "activation",
191 192
        R"DOC((string, default none), The activation function. It could be
    one of {none, relu, gelu}. When none is given, Act would be null
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
    operations)DOC")
        .SetDefault("none");

    AddComment(R"DOC(
FusedGemmEpilogue Operator
This operator is used to perform Activeation(Elementwise_add(Matmul(X, Y), bias)).
It is equal to paddle.nn.Linear + Activation (None, ReLU or GeLU).

Note:
X could be more than two dimension and would be flatten to 2D for computing.
X with shape [d0, d1, d2, d3] -> X_2D with shape [d0*d1*d2, d3]
)DOC");
  }
};

class FusedGemmEpilogueGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
214 215
    OP_INOUT_CHECK(
        ctx->HasInput("DOut"), "Input", "DOut", "FusedGemmEpilogueGradOp");
216 217 218 219 220 221 222 223
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FusedGemmEpilogueGradOp");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "FusedGemmEpilogueGradOp");
    OP_INOUT_CHECK(ctx->HasOutput("DY"), "Output", "DY", "FusedGemmEpilogueOp");

    auto dout_dims = ctx->GetInputDim("DOut");
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");

224 225 226
    auto trans_x = ctx->Attrs().Get<bool>("trans_x");
    auto trans_y = ctx->Attrs().Get<bool>("trans_y");

227
    PADDLE_ENFORCE_GE(
228 229
        dout_dims.size(),
        2,
230 231 232 233 234 235
        platform::errors::InvalidArgument(
            "The Input tensor DOut's dimension of FusedGemmEpilogueGradOp "
            " should be >= 2, but got %d.",
            dout_dims.size()));

    PADDLE_ENFORCE_EQ(
236 237
        y_dims.size(),
        2,
238 239 240 241 242 243
        platform::errors::InvalidArgument(
            "The Input tensor Y's dimension of FusedGemmEpilogueGradOp "
            " should be 2, but got %d.",
            y_dims.size()));

    PADDLE_ENFORCE_GE(
244 245
        x_dims.size(),
        2,
246 247 248 249 250 251
        platform::errors::InvalidArgument(
            "The Input tensor X's dimension of FusedGemmEpilogueGradOp "
            " should be >= 2, but got %d.",
            x_dims.size()));

    PADDLE_ENFORCE_EQ(
252 253
        dout_dims.size(),
        x_dims.size(),
254 255 256 257
        platform::errors::InvalidArgument(
            "The Input tensor DOut's and X's dimension of "
            "FusedGemmEpilogueGradOp "
            " should be the same, but got DOut's dim = %d and X's = %d.",
258 259
            dout_dims.size(),
            x_dims.size()));
260 261 262 263 264 265

    auto dout_mat_dims = phi::flatten_to_2d(dout_dims, dout_dims.size() - 1);

    auto x_mat_dims = phi::flatten_to_2d(x_dims, x_dims.size() - 1);

    PADDLE_ENFORCE_EQ(
266 267
        dout_mat_dims[1],
        trans_y ? y_dims[0] : y_dims[1],
268 269 270
        platform::errors::InvalidArgument(
            "The last dimension of DOut should be equal with Y's last"
            "dimension. But received DOut[-1] = [%d], Y[1] = [%d].",
271 272
            dout_mat_dims[1],
            y_dims[1]));
273 274

    PADDLE_ENFORCE_EQ(
275 276
        dout_mat_dims[0],
        trans_x ? x_mat_dims[1] : x_mat_dims[0],
277 278 279
        platform::errors::InvalidArgument(
            "The first dimension of DOut should be equal with X's first"
            "dimension. But received DOut[0] = [%d], Y[0] = [%d].",
280 281
            dout_mat_dims[0],
            x_mat_dims[0]));
282 283 284 285 286

    auto activation_grad = ctx->Attrs().Get<std::string>("activation_grad");
    if ((activation_grad != "relu_grad") && (activation_grad != "gelu_grad") &&
        (activation_grad != "none")) {
      PADDLE_ENFORCE_EQ(
287 288
          true,
          false,
289 290 291 292 293 294 295 296
          platform::errors::InvalidArgument(
              "The activation attribute of fused_gemm_epilogue op should be"
              " one of {\"none\", \"relu\", \"gelu\"}. But received %s."
              "But received activation=%s.",
              activation_grad));
    }

    if (activation_grad != "none" && !ctx->HasInput("ReserveSpace")) {
297 298
      PADDLE_ENFORCE_EQ(true,
                        false,
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
                        platform::errors::InvalidArgument(
                            "The ReserveSpace should not be empty. "
                            "when activation_grad == {relu_grad, gelu_grad}."));
    }

    if (ctx->HasOutput("DX")) {
      std::vector<int64_t> dx_dims;
      dx_dims.reserve(static_cast<size_t>(x_dims.size()));
      for (int i = 0; i < x_dims.size(); ++i) {
        dx_dims.push_back(x_dims[i]);
      }
      ctx->SetOutputDim("DX", phi::make_ddim(dx_dims));
    }

    std::vector<int64_t> dy_dims(y_dims.Get(), y_dims.Get() + y_dims.size());
    ctx->SetOutputDim("DY", phi::make_ddim(dy_dims));

    if (ctx->HasOutput("DBias")) {
      std::vector<int64_t> dbias_dims;
318
      dbias_dims.push_back(trans_y ? y_dims[0] : y_dims[1]);
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
      ctx->SetOutputDim("DBias", phi::make_ddim(dbias_dims));
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const {
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DOut");
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
  }
};

class FusedGemmEpilogueGradOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("DOut",
             "The input grad tensor to Out of Out = (Act(X) * Y) + bias");
    AddInput("X", "The input tensor X of Out = (Act(X) * Y) + bias");
    AddInput("Y", "The input tensor Y of Out = (Act(X) * Y) + bias");
    AddInput("ReserveSpace",
340 341 342
             R"DOC(A GPU space to fetch
        auxiliary data pointer. It is used to pass auxiliary data pointer
        for fused_gemm_epilogue_grad op. If not given (empty string), the
343 344 345 346 347 348 349 350 351 352
        auxiliary mode would not be enable.)DOC")
        .AsDispensable();

    AddOutput("DX", "The output grad tensor to X of Out = (Act(X) * Y) + bias.")
        .AsDispensable();
    AddOutput("DY",
              "The output grad tensor to Y of Out = (Act(X) * Y) + bias.");
    AddOutput("DBias",
              "The output grad tensor to bias of Out = (Act(X) * Y) + bias.")
        .AsDispensable();
353 354
    AddAttr<bool>(
        "trans_x",
355 356 357
        R"DOC((bool, default false), Whether to transpose input tensor X
    or not. The input tensor X coulbe be more than two dimension. When
    set trans_x=true, it would fully reverse X. For instant: X with shpae
358 359 360 361
    [d0, d1, d2, d3] -> [d3, d2, d1, d0].)DOC")
        .SetDefault(false);
    AddAttr<bool>(
        "trans_y",
362 363 364
        R"DOC((bool, default false), Whether to transpose input tensor Y
    or not. The input tensor Y should be two dimension. When
    set trans_y=true, it would transpose Y. For instant: Y with shpae
365 366
    [d0, d1] -> [d1, d0].)DOC")
        .SetDefault(false);
367 368 369

    AddAttr<std::string>(
        "activation_grad",
370 371
        R"DOC((string, default none), The backward activation function. It could be
    one of {none, relu_grad, gelu_grad}. When none is given, The backward Act would
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
    be null operations)DOC")
        .SetDefault("none");

    AddComment(R"DOC(
FusedGemmEpilogueGrad Operator
This operator is used to perform backward of Elementwise_add(Matmul(Activeation(X), Y), bias).
It is equal to Activation (None, ReLU or GeLU) + paddle.nn.Linear.

Note:
X could be more than two dimension and would be flatten to 2D for computing.
X with shape [d0, d1, d2, d3] -> X_2D with shape [d0*d1*d2, d3]
)DOC");
  }
};

387 388 389 390 391 392 393 394 395 396 397 398
template <typename T>
class FusedGemmEpilogueOpGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    const auto& act_type = this->template Attr<std::string>("activation");

    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
399 400 401
    if (act_type != "none") {
      op->SetInput("ReserveSpace", this->Input("ReserveSpace"));
    }
402 403 404 405 406 407 408 409 410 411
    op->SetInput("DOut", this->OutputGrad("Out"));

    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DY", this->InputGrad("Y"));
    op->SetOutput("DBias", this->InputGrad("Bias"));

    op->SetAttrMap(this->Attrs());
  }
};

412 413 414 415
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
416
REGISTER_OPERATOR(
417 418
    fused_gemm_epilogue,
    ops::FusedGemmEpilogueOp,
419 420 421
    ops::FusedGemmEpilogueOpMaker,
    ops::FusedGemmEpilogueOpGradMaker<paddle::framework::OpDesc>,
    ops::FusedGemmEpilogueOpGradMaker<paddle::imperative::OpBase>);
422 423
REGISTER_OPERATOR(fused_gemm_epilogue_grad,
                  ops::FusedGemmEpilogueGradOp,
424
                  ops::FusedGemmEpilogueGradOpMaker);