layer_norm_op.h 7.8 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

C
chengduoZH 已提交
19 20 21
#include "paddle/operators/elementwise_op_function.h"
#include "paddle/operators/math/math_function.h"

C
chengduoZH 已提交
22 23 24
namespace paddle {
namespace operators {

C
chengduoZH 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
template <typename T>
struct SubAndSquareFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return (a - b) * (a - b); }
};

template <typename T>
struct DivAndSqrtFunctor {
  explicit DivAndSqrtFunctor(T epsilon) { epsilon_ = epsilon; }
  inline HOSTDEVICE T operator()(T a, T b) const {
    return a / (sqrt(b) + epsilon_);
  }

 private:
  T epsilon_;
};

template <typename T>
struct MulFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a * b; }
};

template <typename T>
struct AddFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a + b; }
};

template <typename T>
struct SubFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a - b; }
};

template <typename T>
struct MulInvVarFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const {
    return a * std::sqrt(1.0 / b);
  }
};

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

C
chengduoZH 已提交
67 68 69
template <typename DeviceContext, typename T>
class LayerNormKernel : public framework::OpKernel<T> {
 public:
C
chengduoZH 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    auto *scale = ctx.Input<Tensor>("Scale");
    auto *bias = ctx.Input<Tensor>("Bias");
    auto x = *ctx.Input<Tensor>("X");

    auto *y = ctx.Output<Tensor>("Y");
    auto *mean = ctx.Output<Tensor>("Mean");
    auto *var = ctx.Output<Tensor>("Variance");
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");

    const auto &x_dims = x.dims();

    y->mutable_data<T>(ctx.GetPlace());
    mean->mutable_data<T>(ctx.GetPlace());
    var->mutable_data<T>(ctx.GetPlace());

    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
    int left = static_cast<int>(matrix_dim[0]);
    int right = static_cast<int>(matrix_dim[1]);

    framework::DDim matrix_shape({left, right});

    x.Resize(matrix_shape);
    y->Resize(matrix_shape);

    auto &dev_ctx = ctx.template device_context<DeviceContext>();
    math::RowwiseMean<DeviceContext, T> row_mean;

    // functor-> get mean
    row_mean(dev_ctx, x, mean);

    // functor-> get variance
    ElementwiseComputeEx<SubAndSquareFunctor<T>, DeviceContext, T>(
        ctx, &x, mean, /*axis*/ 0, SubAndSquareFunctor<T>(), y);
    row_mean(dev_ctx, *y, var);

    // functor-> get norm_out
    ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
        ctx, &x, mean, /*axis*/ 0, SubFunctor<T>(), y);
    ElementwiseComputeEx<DivAndSqrtFunctor<T>, DeviceContext, T>(
        ctx, y, var, /*axis*/ 0, DivAndSqrtFunctor<T>(static_cast<T>(epsilon)),
        y);

    framework::DDim scale_shape({right});
    if (scale) {
      Tensor scale_matrix = *scale;
      scale_matrix.Resize(scale_shape);
      ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
          ctx, y, &scale_matrix, /*axis*/ 1, MulFunctor<T>(), y);
    }
    if (bias) {
      Tensor bias_matrix = *bias;
      bias_matrix.Resize(scale_shape);
      ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(
          ctx, y, &bias_matrix, /*axis*/ 1, AddFunctor<T>(), y);
    }
    y->Resize(x_dims);
  }
C
chengduoZH 已提交
129 130 131 132 133
};

template <typename DeviceContext, typename T>
class LayerNormGradKernel : public framework::OpKernel<T> {
 public:
C
chengduoZH 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    auto x = *ctx.Input<Tensor>("X");
    auto mean = *ctx.Input<Tensor>("Mean");
    auto var = *ctx.Input<Tensor>("Variance");
    auto scale = *ctx.Input<Tensor>("Scale");
    auto d_y = *ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");

    // init output
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    const auto &x_dims = x.dims();
    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
    int left = static_cast<int>(matrix_dim[0]);
    int right = static_cast<int>(matrix_dim[1]);
    framework::DDim matrix_shape({left, right});

    d_y.Resize(matrix_shape);
    auto &dev_ctx = ctx.template device_context<DeviceContext>();
    math::ColwiseSum<DeviceContext, T> colwise_sum;

    Tensor temp;
    Tensor temp_norm;
    if (d_scale || d_x) {
      x.Resize(matrix_shape);
      temp.mutable_data<T>(matrix_shape, ctx.GetPlace());
      temp_norm.mutable_data<T>(matrix_shape, ctx.GetPlace());

      // get x_norm
      ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
          ctx, &x, &mean, /*axis*/ 0, SubFunctor<T>(), &temp_norm);
      ElementwiseComputeEx<DivAndSqrtFunctor<T>, DeviceContext, T>(
          ctx, &temp_norm, &var, /*axis*/ 0,
          DivAndSqrtFunctor<T>(static_cast<T>(epsilon)), &temp_norm);
    }

    if (d_bias) {
      d_bias->mutable_data<T>(ctx.GetPlace());
      colwise_sum(dev_ctx, d_y, d_bias);
    }
    if (d_scale) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
          ctx, &temp_norm, &d_y, /*axis*/ 0, MulFunctor<T>(), &temp);
      colwise_sum(dev_ctx, temp, d_scale);
    }

    if (d_x) {
      framework::DDim vec_shape({left});
      d_x->mutable_data<T>(ctx.GetPlace());
      Tensor temp_vec;
      temp_vec.mutable_data<T>(vec_shape, ctx.GetPlace());

      math::RowwiseMean<DeviceContext, T> row_mean;

      if (d_scale) {
        // dy_dx
        ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
            ctx, &d_y, &scale, /*axis*/ 1, MulFunctor<T>(), &temp);
        framework::Copy(temp, ctx.GetPlace(), ctx.device_context(), d_x);

        // dy_dmean_dx
        row_mean(dev_ctx, temp, &temp_vec);
        ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
            ctx, d_x, &temp_vec, /*axis*/ 0, SubFunctor<T>(), d_x);

        // dy_var_dx
        ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
            ctx, &temp, &temp_norm, /*axis*/ 0, MulFunctor<T>(), &temp);

      } else {
        // dy_dx
        framework::Copy(d_y, ctx.GetPlace(), ctx.device_context(), d_x);

        // dy_dmean_dx
        row_mean(dev_ctx, d_y, &temp_vec);
        ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
            ctx, d_x, &temp_vec, /*axis*/ 0, SubFunctor<T>(), d_x);

        // dy_var_dx
        ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
            ctx, &d_y, &temp_norm, /*axis*/ 0, MulFunctor<T>(), &temp);
      }
      // dy_var_dx
      row_mean(dev_ctx, temp, &temp_vec);
      ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
          ctx, &temp_norm, &temp_vec, /*axis*/ 0, MulFunctor<T>(), &temp_norm);
      ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
          ctx, d_x, &temp_norm, /*axis*/ 0, SubFunctor<T>(), d_x);

      ElementwiseComputeEx<DivAndSqrtFunctor<T>, DeviceContext, T>(
          ctx, d_x, &var, /*axis*/ 0,
          DivAndSqrtFunctor<T>(static_cast<T>(epsilon)), d_x);
    }
  }
C
chengduoZH 已提交
232 233 234 235
};

}  // namespace operators
}  // namespace paddle