profiler.html 25.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Introduction &mdash; PaddlePaddle  文档</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="索引"
              href="../genindex.html"/>
        <link rel="search" title="搜索" href="../search.html"/>
    <link rel="top" title="PaddlePaddle  文档" href="../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_cn.html">新手入门</a></li>
85 86 87
<li class="toctree-l1"><a class="reference internal" href="../build_and_install/index_cn.html">安装与编译</a></li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_cn.html">进阶使用</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dev/index_cn.html">开发标准</a></li>
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
<li class="toctree-l1"><a class="reference internal" href="../api/index_cn.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../faq/index_cn.html">FAQ</a></li>
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_cn.html">新手入门</a><ul>
112 113
<li class="toctree-l2"><a class="reference internal" href="../getstarted/quickstart_cn.html">快速开始</a></li>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/concepts/use_concepts_cn.html">基本使用概念</a></li>
114 115
</ul>
</li>
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
<li class="toctree-l1"><a class="reference internal" href="../build_and_install/index_cn.html">安装与编译</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/pip_install_cn.html">使用pip安装</a></li>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/docker_install_cn.html">使用Docker安装运行</a></li>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/build_cn.html">用Docker编译和测试PaddlePaddle</a></li>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/build_from_source_cn.html">从源码编译</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_cn.html">进阶使用</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../howto/cmd_parameter/index_cn.html">命令行参数设置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/cluster/index_cn.html">分布式训练</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/preparations_cn.html">环境准备</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/cmd_argument_cn.html">启动参数说明</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/multi_cluster/index_cn.html">在不同集群中运行</a><ul>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/fabric_cn.html">使用fabric启动集群训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/openmpi_cn.html">在OpenMPI集群中提交训练作业</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/k8s_cn.html">Kubernetes单机训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/k8s_distributed_cn.html">Kubernetes分布式训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/k8s_aws_cn.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li>
139 140 141 142
</ul>
</li>
</ul>
</li>
143 144 145 146
<li class="toctree-l2"><a class="reference internal" href="../howto/capi/index_cn.html">C-API预测库</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/capi/compile_paddle_lib_cn.html">安装与编译C-API预测库</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/capi/organization_of_the_inputs_cn.html">输入/输出数据组织</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/capi/workflow_of_capi_cn.html">C-API使用流程</a></li>
147 148
</ul>
</li>
149 150 151 152 153
<li class="toctree-l2"><a class="reference internal" href="../howto/rnn/index_cn.html">RNN相关模型</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/rnn_config_cn.html">RNN配置</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
154 155
</ul>
</li>
156
<li class="toctree-l2"><a class="reference internal" href="../howto/optimization/gpu_profiling_cn.html">GPU性能调优</a></li>
157 158
</ul>
</li>
159 160 161
<li class="toctree-l1"><a class="reference internal" href="../dev/index_cn.html">开发标准</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
<li class="toctree-l2"><a class="reference internal" href="../dev/write_docs_cn.html">如何贡献文档</a></li>
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../api/index_cn.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/model_configs.html">模型配置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/evaluators.html">Evaluators</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/data.html">数据访问</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/data/data_reader.html">Data Reader Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/data/image.html">Image Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/data/dataset.html">Dataset</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/run_logic.html">训练与应用</a></li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/fluid.html">Fluid</a><ul>
183 184 185 186 187 188 189 190 191 192 193
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/layers.html">layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/data_feeder.html">data_feeder</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/executor.html">executor</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/initializer.html">initializer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/evaluator.html">evaluator</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/nets.html">nets</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/optimizer.html">optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/param_attr.html">param_attr</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/profiler.html">profiler</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/regularizer.html">regularizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/io.html">io</a></li>
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../faq/index_cn.html">FAQ</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../faq/build_and_install/index_cn.html">编译安装与单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/model/index_cn.html">模型配置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/parameter/index_cn.html">参数设置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/local/index_cn.html">本地训练与预测</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/cluster/index_cn.html">集群训练与预测</a></li>
</ul>
</li>
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>Introduction</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="introduction">
<span id="introduction"></span><h1>Introduction<a class="headerlink" href="#introduction" title="永久链接至标题"></a></h1>
<p>There are many performance analysis tools for <a class="reference external" href="https://en.wikipedia.org/wiki/List_of_performance_analysis_tools">different programming languages and different software frameworks</a>. For most popular deep learning frameworks, they use several programming languages and adapt to heterogeneous platforms. Similar to most of the deep learning frameworks, PaddlePaddle also uses C++, CUDA and Python as the basic programming languages to adapt to run on CPU and GPU devices.  The <a class="reference external" href="http://docs.nvidia.com/cuda/profiler-users-guide/index.html#nvprof-overview"><code class="docutils literal"><span class="pre">nvprof</span></code> tools</a> is usually used to analyse the CUDA program.  We have <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/optimization/cpu_profiling.md">a document</a> to profile CPU and Python program by <a class="reference external" href="https://pypi.python.org/pypi/yep">yep</a> and <a class="reference external" href="https://github.com/google/pprof">Google&#8217;s perftools</a> to profile only the CPU and Python program. But for <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/fluid.md">PaddlePaddle fluid</a>, the operator is the basic computing unit. The developers usually want to collect the time of each operator and locate bottlenecks.  The <code class="docutils literal"><span class="pre">nvprof</span></code> usually collect the timeline of CUDA-related activities on both CPU and GPU, including kernel execution, memory transfers, memory set and CUDA API calls and events or metrics for CUDA kernels. And the <code class="docutils literal"><span class="pre">yep</span></code> and <code class="docutils literal"><span class="pre">Google's</span> <span class="pre">perftools</span></code> can&#8217;t collect the timeline for CUDA program. All these tools can&#8217;t collect time in the operator level. So we design this profiling tool.</p>
</div>
<div class="section" id="architecture">
<span id="architecture"></span><h1>Architecture<a class="headerlink" href="#architecture" title="永久链接至标题"></a></h1>
<p>The work flow for most task is as follows. Each operator will run many times in the all iterations. So the profiler must collect the total time of each operator during the iteration. For more, sometimes, the developers may want to collect more detailed time span inside the operator or record time span for elsewhere, this requires that the profiler must support to record the nested time span. And in order to speedup training, all the deep learning frameworks support parallel computing, including multiple threads on CPU and multiple GPUs. So the profiler must be able to collect the timeline for each thread. In addition, the profiler also occupies certain resources. It must can be easily to be enabled or disabled by the developers. At last, the profiler should present a human-readable report.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">xrange</span><span class="p">(</span><span class="n">M</span><span class="p">):</span>  <span class="c1"># M is  the iteration number</span>
  <span class="k">for</span> <span class="n">op</span> <span class="ow">in</span> <span class="n">operator_lists</span><span class="p">:</span> <span class="c1"># The `operator_lists` contains all the operators in the network.</span>
    <span class="n">op</span><span class="o">.</span><span class="n">run</span><span class="p">();</span>
</pre></div>
</div>
<p>In summary, the proflier should have following features:</p>
<ul class="simple">
<li>records time span in loop.</li>
<li>supports nested time span.</li>
<li>supports multiple threads/multiple GPUs.</li>
<li>supports to be enabled and disabled by users.</li>
</ul>
<p>But how to record the time for the mixed C++ and CUDA program?  There many C++ APIs to get the current calendar time in host program. But for GPU, the CUDA kernels may be executed concurrently if they are in different <a class="reference external" href="http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#streams">streams</a> and the CUDA kernels is asynchronous with the host program if there is no the synchronous aftern the CUDA kernels. CUDA provides <a class="reference external" href="http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#events">event</a> to monitor the device and perform accurate timing. Inspired by PyTorch and CUDA event, we also design and apply the events to record the timeline. Then summarize and present statistics based on these events.</p>
<p>The overall flow is shown as the following figure.</p>
<p><img src="./images/profiler.png" align="center"/><br/></p>
<div class="section" id="event">
<span id="event"></span><h2>Event<a class="headerlink" href="#event" title="永久链接至标题"></a></h2>
<p>In above work flow, a pair of events are needed before and after the piece of code to collect time. So the event has a flag to mark whether it is a starting event or an ending event. Except this two kinds of event, sometime, a only marker with a text message&nbsp;is needed, for example, a marker to specify the profiling start or end. There are three kinds of event:</p>
<div class="highlight-c++"><div class="highlight"><pre><span></span><span class="k">enum</span> <span class="n">EventKind</span> <span class="p">{</span>
  <span class="n">kMark</span><span class="p">,</span>
  <span class="n">kPushRange</span><span class="p">,</span>
  <span class="n">kPopRange</span><span class="p">};</span>
</pre></div>
</div>
<ul class="simple">
<li>kMark: only a marker without time range.</li>
<li>kPushRange: mark the starting event for time range.</li>
<li>kPopRange: mark the ending event for time range.</li>
</ul>
<p>For the CPU code, the events only need to record the current time. For the CUDA code, the <a class="reference external" href="http://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EVENT.html#group__CUDART__EVENT">event management functions of CUDA</a> are used.  For many pieces of code, an event lists are used to record each piece.</p>
<div class="highlight-c++"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">Event</span> <span class="p">{</span>
 <span class="k">public</span><span class="o">:</span>
  <span class="c1">// The DeviceContext is used to get current  CUDA stream.</span>
  <span class="n">Event</span><span class="p">(</span><span class="n">EventKind</span> <span class="n">kind</span><span class="p">,</span> <span class="n">std</span><span class="o">::</span><span class="n">string</span> <span class="n">name</span><span class="p">,</span> <span class="kt">uint32_t</span> <span class="n">thread_id</span><span class="p">,</span>
        <span class="k">const</span> <span class="n">platform</span><span class="o">::</span><span class="n">DeviceContext</span><span class="o">*</span> <span class="n">dev_ctx</span> <span class="o">=</span> <span class="k">nullptr</span><span class="p">);</span>
  <span class="kt">double</span> <span class="nf">CpuElapsedUs</span><span class="p">(</span><span class="k">const</span> <span class="n">Event</span><span class="o">&amp;</span> <span class="n">e</span><span class="p">)</span> <span class="k">const</span><span class="p">;</span>
  <span class="kt">double</span> <span class="nf">CudaElapsedUs</span><span class="p">(</span><span class="k">const</span> <span class="n">Event</span><span class="o">&amp;</span> <span class="n">e</span><span class="p">)</span> <span class="k">const</span><span class="p">;</span>

 <span class="k">private</span><span class="o">:</span>
  <span class="n">EventKind</span> <span class="n">kind_</span><span class="p">;</span>
  <span class="n">std</span><span class="o">::</span><span class="n">string</span> <span class="n">name_</span><span class="p">;</span>
  <span class="kt">uint32_t</span> <span class="n">thread_id_</span><span class="p">;</span>
  <span class="kt">int64_t</span> <span class="n">cpu_ns_</span><span class="p">;</span>
<span class="cp">#ifdef PADDLE_WITH_CUDA</span>
  <span class="n">cudaEvent_t</span> <span class="n">event_</span> <span class="o">=</span> <span class="k">nullptr</span><span class="p">;</span>
  <span class="kt">int</span> <span class="n">device_</span> <span class="o">=</span> <span class="o">-</span><span class="mi">1</span><span class="p">;</span>
<span class="cp">#endif</span>
<span class="p">};</span>

<span class="k">struct</span> <span class="n">EventList</span> <span class="p">{</span>
  <span class="n">std</span><span class="o">::</span><span class="n">forward_list</span><span class="o">&lt;</span><span class="n">std</span><span class="o">::</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">Event</span><span class="o">&gt;&gt;</span> <span class="n">event_blocks</span><span class="p">;</span>
<span class="p">};</span>
</pre></div>
</div>
<p>As mentioned above, there is no need to record the timeline when disabling the profiler. So there is a global state to enable or disable the profiler.</p>
<div class="highlight-c++"><div class="highlight"><pre><span></span><span class="k">enum</span> <span class="n">ProfilerState</span> <span class="p">{</span>
  <span class="n">kDisabled</span><span class="p">,</span> 
  <span class="n">kCPU</span><span class="p">,</span>
  <span class="n">kCUDA</span>
<span class="p">};</span>
<span class="n">ProfilerState</span> <span class="n">g_state</span><span class="p">;</span>
</pre></div>
</div>
<ul class="simple">
<li>kDisabled: the disabled state.</li>
<li>kCPU: CPU profiling state.</li>
<li>kCUDA: GPU profiling state.</li>
</ul>
<p>A pair of starting and ending events are pushed to event lists in constructor and destructor of <code class="docutils literal"><span class="pre">RecordEvent</span></code>. So the timeline is recorded for the code in the lifecycle of an object of <code class="docutils literal"><span class="pre">RecordEvent</span></code>.</p>
<div class="highlight-c++"><div class="highlight"><pre><span></span><span class="k">struct</span> <span class="n">RecordEvent</span> <span class="p">{</span>
  <span class="k">explicit</span> <span class="n">RecordEvent</span><span class="p">(</span><span class="k">const</span> <span class="n">std</span><span class="o">::</span><span class="n">string</span> <span class="n">name</span><span class="p">,</span>
                       <span class="n">platform</span><span class="o">::</span><span class="n">DeviceContext</span><span class="o">*</span> <span class="n">dev_ctx</span> <span class="o">=</span> <span class="k">nullptr</span><span class="p">)</span> <span class="p">{</span>
    <span class="k">if</span> <span class="p">(</span><span class="n">kState</span> <span class="o">==</span> <span class="n">ProfilerState</span><span class="o">::</span><span class="n">kDisabled</span><span class="p">)</span> <span class="k">return</span><span class="p">;</span>
    <span class="c1">// push the starting event to the event lists.</span>
  <span class="p">}</span>
  <span class="o">~</span><span class="n">RecordEvent</span><span class="p">()</span> <span class="p">{</span>
    <span class="k">if</span> <span class="p">(</span><span class="n">kState</span> <span class="o">==</span> <span class="n">ProfilerState</span><span class="o">::</span><span class="n">kDisabled</span><span class="p">)</span> <span class="k">return</span><span class="p">;</span>
    <span class="c1">// push the ending event to the event lists.</span>
  <span class="p">}</span>
<span class="p">};</span>
</pre></div>
</div>
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
      <script type="text/javascript" src="../_static/jquery.js"></script>
      <script type="text/javascript" src="../_static/underscore.js"></script>
      <script type="text/javascript" src="../_static/doctools.js"></script>
      <script type="text/javascript" src="../_static/translations.js"></script>
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
       
  

  
  
    <script type="text/javascript" src="../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../_static/js/paddle_doc_init.js"></script> 

</body>
</html>