recv_v2_op.cu.cc 4.7 KB
Newer Older
L
lilong12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/collective/recv_v2_op.h"

17
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
L
lilong12 已提交
18
#include "paddle/fluid/platform/collective_helper.h"
19
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
L
lilong12 已提交
20 21
#endif

22 23 24
#include "paddle/fluid/distributed/collective/ProcessGroup.h"
#include "paddle/phi/api/include/tensor.h"

L
lilong12 已提交
25 26 27 28 29 30 31
namespace paddle {
namespace operators {

template <typename T>
class RecvOpV2CUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
32 33
#if (defined(PADDLE_WITH_RCCL) || defined(PADDLE_WITH_NCCL)) && \
    NCCL_VERSION_CODE >= 2703
L
lilong12 已提交
34 35 36 37 38 39 40 41 42 43 44 45
    int rid = ctx.Attr<int>("ring_id");
    PADDLE_ENFORCE_GE(
        rid, 0,
        platform::errors::InvalidArgument(
            "The ring_id (%d) for recv_v2 op must be non-negative.", rid));

    int peer = ctx.Attr<int>("peer");
    PADDLE_ENFORCE_GE(
        peer, 0,
        platform::errors::InvalidArgument(
            "The peer (%d) for recv_v2 op must be non-negative.", peer));

46
    gpuStream_t stream = nullptr;
L
lilong12 已提交
47
    auto place = ctx.GetPlace();
48 49 50 51 52 53 54 55 56 57 58 59 60 61
    auto map = distributed::ProcessGroupMapFromGid::getInstance();
    if (map->has(rid)) {
      // Use ProcessGroup
      distributed::ProcessGroup *pg = map->get(rid);
      std::vector<phi::DenseTensor> out_tensor;
      auto out_shape = ctx.Attr<std::vector<int>>("out_shape");
      auto out = ctx.Output<framework::LoDTensor>("Out");
      auto out_dims = out->dims();
      out->mutable_data<T>(out_dims, place);

      out_tensor.emplace_back(*out);
      auto task = pg->Recv(out_tensor, peer);
      return;
    }
L
lilong12 已提交
62 63 64 65 66 67 68 69 70 71 72 73
    auto comm = platform::NCCLCommContext::Instance().Get(rid, place);
    if (ctx.Attr<bool>("use_calc_stream")) {
      auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
      stream = static_cast<platform::CUDADeviceContext *>(dev_ctx)->stream();
    } else {
      stream = comm->stream();
    }
    PADDLE_ENFORCE_LT(
        peer, comm->nranks(),
        platform::errors::InvalidArgument("The value of peer (%d) you set must "
                                          "be less than comm->nranks (%d).",
                                          peer, comm->nranks()));
74 75 76 77

    int data_type = ctx.Attr<int>("dtype");
    framework::proto::VarType::Type type =
        framework::proto::VarType::Type(data_type);
78
    ncclDataType_t dtype = platform::ToNCCLDataType(type);
79 80 81 82 83 84 85 86 87 88

    auto *out_var = ctx.OutputVar("Out");
    if (out_var->IsType<framework::LoDTensorArray>()) {
      auto out_array = out_var->GetMutable<framework::LoDTensorArray>();
      for (size_t idx = 0; idx < out_array->size(); ++idx) {
        VLOG(3) << "LodTensorArray: idx(" << idx << ")";
        auto out = &out_array->at(idx);
        auto out_dims = out->dims();
        out->mutable_data<T>(out_dims, place, 0);
        auto numel = out->numel();
89
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
90
            out->data<T>(), numel, dtype, peer, comm->comm(), stream));
91 92
        VLOG(3) << "rank " << comm->rank() << " recv " << phi::product(out_dims)
                << " from " << peer;
93 94 95 96 97 98 99 100 101 102
      }
      return;
    }

    auto out_shape = ctx.Attr<std::vector<int>>("out_shape");
    auto out = ctx.Output<framework::LoDTensor>("Out");
    auto out_dims = out->dims();
    auto numel = out->numel();

    out->mutable_data<T>(out_dims, place);
103
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
L
lilong12 已提交
104
        out->data<T>(), numel, dtype, peer, comm->comm(), stream));
105
    VLOG(3) << "rank " << comm->rank() << " recv " << phi::product(out->dims())
106
            << " from " << peer;
L
lilong12 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "PaddlePaddle should be compiled with NCCL and "
        "NCCL version >= 2.7.3 is needed."));
#endif
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OP_CUDA_KERNEL(recv_v2, ops::RecvOpV2CUDAKernel<float>,
                        ops::RecvOpV2CUDAKernel<double>,
                        ops::RecvOpV2CUDAKernel<int>,
                        ops::RecvOpV2CUDAKernel<int64_t>,
                        ops::RecvOpV2CUDAKernel<plat::float16>);