dense_tensor.cc 10.1 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/core/dense_tensor.h"
16

17 18
#include "glog/logging.h"

19 20 21 22
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/complex.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/compat/convert_utils.h"
23

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
/**
 * [ Why still include the fluid headers? ]
 *
 * We hope to organize the basic implementation of Tensor and the logic related
 * to Tensor computation into an independent library, which we call
 * [Tensor Operation Library, phi], so we extract or rewrite the original
 * Kernels.
 *
 * In the future, the training library, inference library and custom operators
 * will link to this Tensor Operation library.
 *
 * However, if we directly split the link relation, we need to make too many
 * changes, which will affect the stability of the framework, so here we still
 * rely on the implementation of the framework, which is a intermediate state.
 *
 * In the future, the necessary components will be moved to the this library,
 * or the corresponding components will be re-implemented.
 */
42

43
namespace phi {
44

45
DenseTensor::DenseTensor(Allocator* a, const DenseTensorMeta& meta)
46
    : meta_(meta), holder_(a->Allocate(SizeOf(dtype()) * numel())) {}
47

48
DenseTensor::DenseTensor(Allocator* a, DenseTensorMeta&& meta)
49
    : meta_(std::move(meta)), holder_(a->Allocate(SizeOf(dtype()) * numel())) {}
50

51
DenseTensor::DenseTensor(const std::shared_ptr<phi::Allocation>& holder,
52
                         const DenseTensorMeta& meta)
53
    : meta_(meta), holder_(holder) {}
54

55
DenseTensor::DenseTensor(const DenseTensor& other) : meta_(other.meta()) {
56
  holder_ = other.holder_;
57 58
  storage_properties_ =
      std::move(CopyStorageProperties(other.storage_properties_));
59
  inplace_version_counter_ = other.inplace_version_counter_;
60 61

#ifdef PADDLE_WITH_MKLDNN
62
  mem_desc_ = other.mem_desc_;
63 64
#endif
}
65

66 67
DenseTensor& DenseTensor::operator=(const DenseTensor& other) {
  meta_ = other.meta();
68
  holder_ = other.holder_;
69 70
  storage_properties_ =
      std::move(CopyStorageProperties(other.storage_properties_));
71
  inplace_version_counter_ = other.inplace_version_counter_;
72
#ifdef PADDLE_WITH_MKLDNN
73
  mem_desc_ = other.mem_desc_;
74
#endif
75 76 77
  return *this;
}

78 79
DenseTensor& DenseTensor::operator=(DenseTensor&& other) {
  meta_ = std::move(other.meta_);
80
  std::swap(holder_, other.holder_);
81
  storage_properties_ = std::move(other.storage_properties_);
82
  std::swap(inplace_version_counter_, other.inplace_version_counter_);
83 84 85
#ifdef PADDLE_WITH_MKLDNN
  mem_desc_ = other.mem_desc_;
#endif
86 87 88
  return *this;
}

89 90 91 92 93 94 95 96
int64_t DenseTensor::numel() const {
  if (meta_.is_scalar) {
    return 1;
  }
  return product(meta_.dims);
}

bool DenseTensor::IsSharedWith(const DenseTensor& b) const {
97
  return holder_ && holder_ == b.Holder();
98 99
}

100 101
void* DenseTensor::AllocateFrom(Allocator* allocator,
                                DataType dtype,
102 103
                                size_t requested_size,
                                bool fake_alloc) {
104 105
  PADDLE_ENFORCE_NOT_NULL(
      allocator,
106
      phi::errors::InvalidArgument(
107 108
          "Required allocator shall not be nullptr, but received nullptr."));
  if (this->dtype() != dtype) {
C
co63oc 已提交
109
    VLOG(10) << "change data type in mutable_data, target dtype - " << dtype;
110 111
    meta_.dtype = dtype;
  }
112

113
  size_t bytes = numel() * SizeOf(this->dtype());
114 115 116 117

  if (fake_alloc) {
    bytes = 0;
  } else {
118
    PADDLE_ENFORCE_EQ(
119
        valid(),
120
        true,
121 122 123 124 125 126 127 128 129 130 131 132
        phi::errors::PreconditionNotMet("The meta data must be valid when "
                                        "call the mutable data function."));
    if (requested_size) {
      PADDLE_ENFORCE_GE(requested_size,
                        bytes,
                        phi::errors::InvalidArgument(
                            "The reserved size %d should be enough to meet the "
                            "volume required by metadata %d.",
                            requested_size,
                            bytes));
      bytes = requested_size;
    }
133
  }
134

135 136 137
  // NOTE(paddle-dev): In case of the allocator of storage_ is different with
  // the incoming allocator, we will re-alloc data using the incoming
  // allocator. See DeviceContext.Alloc in core/device_context.cc.
138 139 140
  if (!holder_ || holder_->size() < bytes + meta_.offset) {
    meta_.offset = 0;
    VLOG(10) << "Allocate data with bytes: " << bytes;
141 142 143 144 145 146 147 148 149 150
    auto holder = allocator->Allocate(bytes);
    if (holder_) {
      PADDLE_ENFORCE_LE(
          numel() * static_cast<int64_t>(SizeOf(dtype)) +
              static_cast<int64_t>(meta_.offset),
          static_cast<int64_t>(holder->size()),
          phi::errors::InvalidArgument(
              "The size of Holder is not enough to store the Tensor."));
    }
    holder_ = std::move(holder);
151 152 153 154 155 156
  }

  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
                                 meta_.offset);
}

157 158
template <typename T>
const T* DenseTensor::data() const {
H
hong 已提交
159 160
  PADDLE_ENFORCE_EQ(
      dtype(),
161
      phi::CppTypeToDataType<T>::Type(),
162
      phi::errors::InvalidArgument(
163 164
          "The type of data we are trying to retrieve (%s) does not match the "
          "type of data (%s) currently contained in the container.",
165
          phi::CppTypeToDataType<T>::Type(),
166
          dtype()));
167 168 169
  return static_cast<const T*>(data());
}

170 171
template <typename T>
T* DenseTensor::data() {
172
  T* ret = static_cast<T*>(data());
173 174 175
  PADDLE_ENFORCE_EQ(
      dtype(),
      phi::CppTypeToDataType<T>::Type(),
176
      phi::errors::InvalidArgument(
177 178
          "The type of data we are trying to retrieve (%s) does not match the "
          "type of data (%s) currently contained in the container.",
179
          phi::CppTypeToDataType<T>::Type(),
180
          dtype()));
181
  return ret;
182 183
}

184
void* DenseTensor::data() {
185
  check_memory_size();
186
  PADDLE_ENFORCE_NOT_NULL(
187
      holder_,
188
      phi::errors::PreconditionNotMet(
189 190
          "The storage must be valid when call the data function."));
  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
191
                                 meta_.offset);
192 193
}

194
const void* DenseTensor::data() const {
195
  check_memory_size();
196
  PADDLE_ENFORCE_NOT_NULL(
197
      holder_,
198
      phi::errors::PreconditionNotMet(
199
          "The storage must be valid when call the data function."));
200
  return reinterpret_cast<const void*>(
201
      reinterpret_cast<uintptr_t>(holder_->ptr()) + meta_.offset);
202 203
}

204
void DenseTensor::set_meta(DenseTensorMeta&& meta) {
205 206 207 208 209
  PADDLE_ENFORCE_EQ(meta_.valid(),
                    false,
                    phi::errors::InvalidArgument(
                        "Only when the original attribute of Tensor is "
                        "incomplete, can it be reset."));
210
  meta_ = std::move(meta);
石晓伟 已提交
211 212
}

213
void DenseTensor::set_meta(const DenseTensorMeta& meta) {
214
  PADDLE_ENFORCE_EQ(
215
      meta.valid(),
216
      true,
217
      phi::errors::InvalidArgument(
218 219 220 221 222 223 224
          "Input meta is invalid, please check the meta attribute."));
  meta_.dims = meta.dims;
  meta_.dtype = meta.dtype;
  meta_.is_scalar = meta.is_scalar;
  meta_.layout = meta.layout;
  meta_.lod = meta.lod;
  meta_.offset = meta.offset;
225
  meta_.use_gpudnn = meta.use_gpudnn;
226 227
}

228
/* @jim19930609: This interface will be further modified until we finalized the
229 230 231 232 233 234 235 236 237
   design for Allocator - Allocation
   For now, we have to temporarily accommodate two independent use cases:
   1. Designed behaviour: DenseTensor constructed with its underlying storage_
   initialized
   2. Legacy behaviour(fluid): DenseTensor constructed using default
   constructor, where
                               storage_ won't be initialized until the first
   call to mutable_data(place)
   */
238
void DenseTensor::ResizeAndAllocate(const DDim& dims) {
石晓伟 已提交
239
  meta_.dims = dims;
240 241
  if (holder_ != nullptr && place().GetType() != AllocationType::UNDEFINED) {
    mutable_data(place());
242
  }
石晓伟 已提交
243 244
}

245 246
void DenseTensor::ResetLoD(const LoD& lod) { meta_.lod = lod; }

247 248 249
#define DATA_MEMBER_FUNC_INSTANTIATION(dtype)      \
  template const dtype* DenseTensor::data() const; \
  template dtype* DenseTensor::data();
250 251 252 253 254 255 256 257 258 259

DATA_MEMBER_FUNC_INSTANTIATION(bool);
DATA_MEMBER_FUNC_INSTANTIATION(int8_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint8_t);
DATA_MEMBER_FUNC_INSTANTIATION(int16_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint16_t);
DATA_MEMBER_FUNC_INSTANTIATION(int32_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint32_t);
DATA_MEMBER_FUNC_INSTANTIATION(int64_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint64_t);
260 261
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::bfloat16);
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::float16);
262 263
DATA_MEMBER_FUNC_INSTANTIATION(float);
DATA_MEMBER_FUNC_INSTANTIATION(double);
264 265
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::complex<float>);
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::complex<double>);
266 267 268

#undef DATA_MEMBER_FUNC_INSTANTIATION

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
template <typename DeviceT>
const DeviceT& DenseTensor::storage_properties() const {
  PADDLE_ENFORCE_NOT_NULL(
      storage_properties_,
      phi::errors::PreconditionNotMet(
          "The storage_properties of current DenseTensor is nullptr."));
  if (DeviceT::classof(storage_properties_.get())) {
    return static_cast<DeviceT&>(*storage_properties_);
  } else {
    PADDLE_THROW(phi::errors::InvalidArgument(
        "The actual type of storage_properties is inconsistent with the type "
        "of the template parameter passed in."));
  }
}

template const NPUStorageProperties& DenseTensor::storage_properties() const;
#ifdef PADDLE_WITH_MKLDNN
template const OneDNNStorageProperties& DenseTensor::storage_properties() const;
#endif

289 290 291 292
bool DenseTensor::storage_properties_initialized() const {
  return storage_properties_ != nullptr;
}

293 294 295 296 297
void DenseTensor::set_storage_properties(
    std::unique_ptr<StorageProperties>&& storage_properties) {
  storage_properties_ = std::move(storage_properties);
}

298
}  // namespace phi