huber_loss_op.h 3.8 KB
Newer Older
Y
yangyaming 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/platform/hostdevice.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

template <typename T>
struct HuberLossForward {
  HOSTDEVICE HuberLossForward(const T& delta) : delta(delta) {}

  HOSTDEVICE T operator()(const T& val) const {
    T abs_val = std::abs(val);
    if (abs_val <= delta) {
35
      return static_cast<T>(0.5) * val * val;
Y
yangyaming 已提交
36
    } else {
37
      return delta * (abs_val - static_cast<T>(0.5) * delta);
Y
yangyaming 已提交
38 39 40 41 42 43 44
    }
  }

  T delta;
};

template <typename Place, typename T, typename AttrType = T>
45
class HuberLossKernel : public framework::OpKernel<T> {
Y
yangyaming 已提交
46 47 48 49
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in0 = context.Input<Tensor>("X");
    auto* in1 = context.Input<Tensor>("Y");
50
    auto* out0 = context.Output<Tensor>("Residual");
Y
yangyaming 已提交
51
    auto* out1 = context.Output<Tensor>("Out");
52
    auto delta = static_cast<T>(context.Attr<AttrType>("delta"));
Y
yangyaming 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
    auto place = context.GetEigenDevice<Place>();

    auto x = EigenVector<T>::Flatten(*in0);
    auto y = EigenVector<T>::Flatten(*in1);
    out0->mutable_data<T>(context.GetPlace());
    auto residual = EigenVector<T>::Flatten(*out0);
    residual.device(place) = y - x;
    out1->mutable_data<T>(context.GetPlace());
    auto loss = EigenVector<T>::Flatten(*out1);
    loss.device(place) = residual.unaryExpr(HuberLossForward<T>(delta));
  }
};

template <typename T>
struct HuberLossBackward {
68 69
  HOSTDEVICE HuberLossBackward(const T& delta, T sign)
      : sign(sign), delta(delta) {}
Y
yangyaming 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83

  HOSTDEVICE T operator()(const T& val) const {
    T abs_val = std::abs(val);
    if (abs_val <= delta) {
      return sign * val;
    } else {
      if (val > 0) {
        return sign * delta;
      } else {
        return -1 * sign * delta;
      }
    }
  }

84
  T sign;
Y
yangyaming 已提交
85 86 87 88
  T delta;
};

template <typename Place, typename T, typename AttrType = T>
89
class HuberLossGradKernel : public framework::OpKernel<T> {
Y
yangyaming 已提交
90 91
 public:
  void Compute(const framework::ExecutionContext& context) const override {
92
    auto* in0 = context.Input<Tensor>("Residual");
Y
yangyaming 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105
    auto* in1 = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* out0 = context.Output<Tensor>(framework::GradVarName("X"));
    auto* out1 = context.Output<Tensor>(framework::GradVarName("Y"));
    auto delta = static_cast<T>(context.op().Attr<AttrType>("delta"));
    auto place = context.GetEigenDevice<Place>();

    auto residual = EigenVector<T>::Flatten(*in0);
    auto out_grad = EigenVector<T>::Flatten(*in1);

    if (out0) {
      out0->mutable_data<T>(context.GetPlace());
      auto x_grad = EigenVector<T>::Flatten(*out0);
      x_grad.device(place) =
106
          out_grad * residual.unaryExpr(HuberLossBackward<T>(delta, -1.0));
Y
yangyaming 已提交
107 108 109 110 111 112
    }

    if (out1) {
      out1->mutable_data<T>(context.GetPlace());
      auto y_grad = EigenVector<T>::Flatten(*out1);
      y_grad.device(place) =
113
          out_grad * residual.unaryExpr(HuberLossBackward<T>(delta, 1.0));
Y
yangyaming 已提交
114 115 116 117 118 119
    }
  }
};

}  // namespace operators
}  // namespace paddle