auc_op.h 4.9 KB
Newer Older
T
typhoonzero 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

T
auc_op  
typhoonzero 已提交
24 25 26 27
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

T
typhoonzero 已提交
28
template <typename Place, typename T>
T
typhoonzero 已提交
29
class AucKernel : public framework::OpKernel<T> {
T
typhoonzero 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* inference = ctx.Input<Tensor>("Inference");
    auto* label = ctx.Input<Tensor>("Label");
    auto* auc = ctx.Output<Tensor>("AUC");

    float* auc_data = auc->mutable_data<float>(ctx.GetPlace());

    std::string curve = ctx.Attr<std::string>("curve");
    int num_thresholds = ctx.Attr<int>("num_thresholds");
    std::vector<float> thresholds_list;
    thresholds_list.reserve(num_thresholds);
    for (int i = 1; i < num_thresholds - 1; i++) {
      thresholds_list[i] = (float)i / (num_thresholds - 1);
    }
    const float kEpsilon = 1e-7;
    thresholds_list[0] = 0.0f - kEpsilon;
    thresholds_list[num_thresholds - 1] = 1.0f + kEpsilon;

T
auc_op  
typhoonzero 已提交
49 50 51 52 53 54
    size_t num_samples = inference->numel();

    const T* inference_data = inference->data<T>();
    Tensor label_casted;
    label_casted.Resize(label->dims());
    bool* label_casted_data = label_casted.mutable_data<bool>(ctx.GetPlace());
T
typhoonzero 已提交
55

T
auc_op  
typhoonzero 已提交
56 57 58 59 60
    const int* label_data = label->data<int>();
    // cast label_data to bool
    for (size_t i = 0; i < num_samples; i++) {
      label_casted_data[i] = static_cast<bool>(label_data[i]);
    }
T
typhoonzero 已提交
61

T
auc_op  
typhoonzero 已提交
62
    // Create local tensor for storing the curve: TP, FN, TN, FP
T
typhoonzero 已提交
63
    // TODO(typhoonzero): use eigen op to caculate these values.
T
update  
typhoonzero 已提交
64
    Tensor true_positive, false_positive, true_negative, false_negative;
T
typhoonzero 已提交
65 66 67 68 69 70

    true_positive.Resize({num_thresholds});
    false_negative.Resize({num_thresholds});
    true_negative.Resize({num_thresholds});
    false_positive.Resize({num_thresholds});

T
update  
typhoonzero 已提交
71 72 73 74
    int* tp_data = true_positive.mutable_data<int>(ctx.GetPlace());
    int* fn_data = false_negative.mutable_data<int>(ctx.GetPlace());
    int* tn_data = true_negative.mutable_data<int>(ctx.GetPlace());
    int* fp_data = false_positive.mutable_data<int>(ctx.GetPlace());
T
typhoonzero 已提交
75

T
typhoonzero 已提交
76
    for (int idx_thresh = 0; idx_thresh < num_thresholds; idx_thresh++) {
T
typhoonzero 已提交
77
      // caculate TP, FN, TN, FP for current thresh
T
typhoonzero 已提交
78
      int tp = 0, fn = 0, tn = 0, fp = 0;
T
typhoonzero 已提交
79
      for (size_t i = 0; i < num_samples; i++) {
T
auc_op  
typhoonzero 已提交
80
        if (label_casted_data[i]) {
T
typhoonzero 已提交
81
          if (inference_data[i] >= (thresholds_list[idx_thresh])) {
T
auc_op  
typhoonzero 已提交
82 83
            tp++;
          } else {
T
typhoonzero 已提交
84
            fn++;
T
auc_op  
typhoonzero 已提交
85 86
          }
        } else {
T
typhoonzero 已提交
87
          if (inference_data[i] >= (thresholds_list[idx_thresh])) {
T
auc_op  
typhoonzero 已提交
88
            fp++;
T
typhoonzero 已提交
89
          } else {
T
typhoonzero 已提交
90
            tn++;
T
typhoonzero 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
          }
        }
      }
      // store rates
      tp_data[idx_thresh] = tp;
      fn_data[idx_thresh] = fn;
      tn_data[idx_thresh] = tn;
      fp_data[idx_thresh] = fp;
    }
    // epsilon to avoid divide by zero.
    float epsilon = 1e-6;
    // Riemann sum to caculate auc.
    Tensor tp_rate, fp_rate, rec_rate;
    tp_rate.Resize({num_thresholds});
    fp_rate.Resize({num_thresholds});
    rec_rate.Resize({num_thresholds});
T
update  
typhoonzero 已提交
107 108 109
    float* tp_rate_data = tp_rate.mutable_data<float>(ctx.GetPlace());
    float* fp_rate_data = fp_rate.mutable_data<float>(ctx.GetPlace());
    float* rec_rate_data = rec_rate.mutable_data<float>(ctx.GetPlace());
T
typhoonzero 已提交
110
    for (int i = 0; i < num_thresholds; i++) {
T
update  
typhoonzero 已提交
111 112 113 114 115
      tp_rate_data[i] =
          ((float)tp_data[i] + epsilon) / (tp_data[i] + fn_data[i] + epsilon);
      fp_rate_data[i] = (float)fp_data[i] / (fp_data[i] + tn_data[i] + epsilon);
      rec_rate_data[i] =
          ((float)tp_data[i] + epsilon) / (tp_data[i] + fp_data[i] + epsilon);
T
typhoonzero 已提交
116
    }
T
typhoonzero 已提交
117
    *auc_data = 0.0f;
T
typhoonzero 已提交
118
    if (curve == "ROC") {
T
typhoonzero 已提交
119 120 121
      for (int i = 0; i < num_thresholds - 1; i++) {
        auto dx = fp_rate_data[i] - fp_rate_data[i + 1];
        auto y = (tp_rate_data[i] + tp_rate_data[i + 1]) / 2.0f;
T
typhoonzero 已提交
122 123
        *auc_data = *auc_data + dx * y;
      }
T
update  
typhoonzero 已提交
124
    } else if (curve == "PR") {
T
typhoonzero 已提交
125 126 127 128 129 130 131 132 133 134 135
      for (int i = 1; i < num_thresholds; i++) {
        auto dx = tp_rate_data[i] - tp_rate_data[i - 1];
        auto y = (rec_rate_data[i] + rec_rate_data[i - 1]) / 2.0f;
        *auc_data = *auc_data + dx * y;
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle