unpool_op.cc 5.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
S
sweetsky0901 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/unpool_op.h"
16 17
#include <string>
#include <vector>
S
sweetsky0901 已提交
18 19 20 21 22
namespace paddle {
namespace operators {

class Unpool2dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
23
  Unpool2dOpMaker(OpProto* proto, OpAttrChecker* op_checker)
S
sweetsky0901 已提交
24
      : OpProtoAndCheckerMaker(proto, op_checker) {
S
sweetsky0901 已提交
25 26
    AddInput(
        "X",
S
sweetsky0901 已提交
27 28 29
        "(Tensor) The input tensor of unpool operator. "
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of feature.");
S
sweetsky0901 已提交
30 31
    AddInput(
        "Indices",
S
sweetsky0901 已提交
32 33 34
        "(Tensor) The input tensor of the indices given out by MaxPool2d. "
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of feature.");
S
sweetsky0901 已提交
35
    AddOutput("Out",
S
sweetsky0901 已提交
36 37 38 39 40
              "(Tensor) The output tensor of unpool operator."
              "The format of output tensor is also NCHW."
              "Where N is batch size, C is "
              "the number of channels, H and W is the height and "
              "width of feature.");
S
sweetsky0901 已提交
41 42
    AddAttr<std::vector<int>>(
        "ksize",
S
sweetsky0901 已提交
43
        "(vector), the unpooling window size(height, width) "
S
sweetsky0901 已提交
44
        "of unpooling operator.");
S
sweetsky0901 已提交
45 46 47
    AddAttr<std::vector<int>>("strides",
                              "(vector, default:{1, 1}), "
                              "strides (height, width) of unpooling operator.")
S
sweetsky0901 已提交
48
        .SetDefault({1, 1});
S
sweetsky0901 已提交
49 50 51
    AddAttr<std::vector<int>>("paddings",
                              "(vector defalut:{0,0}), "
                              "paddings (height, width) of unpooling operator.")
S
sweetsky0901 已提交
52
        .SetDefault({0, 0});
S
sweetsky0901 已提交
53 54
    AddAttr<std::string>(
        "unpooling_type",
S
sweetsky0901 已提交
55 56
        "(string), unpooling type, can be \"max\" for max-unpooling ")
        .InEnum({"max"});
S
sweetsky0901 已提交
57
    AddComment(R"DOC(
Y
ying 已提交
58 59
Input shape is: $(N, C_{in}, H_{in}, W_{in})$, Output shape is:
$(N, C_{out}, H_{out}, W_{out})$, where
Y
ying 已提交
60 61 62 63 64 65
$$
H_{out} = (H_{in}−1) * strides[0] − 2 * paddings[0] + ksize[0] \\
W_{out} = (W_{in}−1) * strides[1] − 2 * paddings[1] + ksize[1]
$$
Paper: http://www.matthewzeiler.com/wp-content/uploads/2017/07/iccv2011.pdf
)DOC");
S
sweetsky0901 已提交
66 67 68
  }
};

Y
Yang Yang 已提交
69
int UnpoolOutputSize(int input_size, int ksize, int padding, int stride) {
S
sweetsky0901 已提交
70
  int output_size = (input_size - 1) * stride - 2 * padding + ksize;
S
sweetsky0901 已提交
71 72 73 74
  return output_size;
}

class UnpoolOp : public framework::OperatorWithKernel {
S
sweetsky0901 已提交
75
 protected:
76
  framework::OpKernelType GetExpectedKernelType(
S
sweetsky0901 已提交
77 78 79
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
S
sweetsky0901 已提交
80
        ctx.device_context());
S
sweetsky0901 已提交
81
  }
S
sweetsky0901 已提交
82

S
sweetsky0901 已提交
83 84 85
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
S
sweetsky0901 已提交
86 87 88 89 90
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of UnpoolOp"
                   "should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Indices"),
                   "Input(Indices) of UnpoolOp"
S
sweetsky0901 已提交
91
                   "should not be null.");
S
sweetsky0901 已提交
92
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
S
sweetsky0901 已提交
93
                   "Output(Out) of UnpoolOp should not be null.");
S
sweetsky0901 已提交
94 95
    auto in_x_dims = ctx->GetInputDim("X");
    auto in_y_dims = ctx->GetInputDim("Indices");
S
sweetsky0901 已提交
96 97
    std::string unpooling_type =
        ctx->Attrs().Get<std::string>("unpooling_type");
S
sweetsky0901 已提交
98 99
    std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
S
sweetsky0901 已提交
100
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
S
sweetsky0901 已提交
101
    PADDLE_ENFORCE(in_x_dims.size() == 4,
S
sweetsky0901 已提交
102
                   "Unpooling intput must be of 4-dimensional.");
S
sweetsky0901 已提交
103 104 105
    PADDLE_ENFORCE_EQ(in_x_dims, in_y_dims);
    std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
    for (size_t i = 0; i < ksize.size(); ++i) {
Y
Yang Yang 已提交
106 107
      output_shape.push_back(UnpoolOutputSize(in_x_dims[i + 2], ksize[i],
                                              paddings[i], strides[i]));
S
sweetsky0901 已提交
108 109 110
    }
    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
  }
S
sweetsky0901 已提交
111 112 113
};

class UnpoolOpGrad : public framework::OperatorWithKernel {
S
sweetsky0901 已提交
114
 protected:
115
  framework::OpKernelType GetExpectedKernelType(
S
sweetsky0901 已提交
116 117
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
S
sweetsky0901 已提交
118 119
        framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
        ctx.device_context());
S
sweetsky0901 已提交
120
  }
S
sweetsky0901 已提交
121

S
sweetsky0901 已提交
122 123 124 125 126
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
S
sweetsky0901 已提交
127
                   "Input(X@GRAD) should not be null.");
S
sweetsky0901 已提交
128 129
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
S
sweetsky0901 已提交
130
};
S
sweetsky0901 已提交
131 132
}  // namespace operators
}  // namespace paddle
S
sweetsky0901 已提交
133 134

namespace ops = paddle::operators;
S
sweetsky0901 已提交
135
REGISTER_OP(unpool, ops::UnpoolOp, ops::Unpool2dOpMaker, unpool_grad,
S
sweetsky0901 已提交
136
            ops::UnpoolOpGrad);
S
sweetsky0901 已提交
137
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
138 139 140 141 142 143
    unpool, ops::UnpoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnpoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    unpool_grad,
    ops::UnpoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnpoolGradKernel<paddle::platform::CPUDeviceContext, double>);