recv_v2_op.cu.cc 3.8 KB
Newer Older
L
lilong12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/collective/recv_v2_op.h"

#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/nccl_helper.h"
#endif

namespace paddle {
namespace operators {

template <typename T>
class RecvOpV2CUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
L
lilong12 已提交
29
#if defined(PADDLE_WITH_NCCL) && NCCL_VERSION_CODE >= 2703
L
lilong12 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    int rid = ctx.Attr<int>("ring_id");
    PADDLE_ENFORCE_GE(
        rid, 0,
        platform::errors::InvalidArgument(
            "The ring_id (%d) for recv_v2 op must be non-negative.", rid));

    int peer = ctx.Attr<int>("peer");
    PADDLE_ENFORCE_GE(
        peer, 0,
        platform::errors::InvalidArgument(
            "The peer (%d) for recv_v2 op must be non-negative.", peer));

    auto out = ctx.Output<framework::LoDTensor>("Out");
    auto out_dims = out->dims();
    int data_type = ctx.Attr<int>("dtype");
    framework::proto::VarType::Type type =
        framework::proto::VarType::Type(data_type);

    cudaStream_t stream = nullptr;
    auto place = ctx.GetPlace();
    auto comm = platform::NCCLCommContext::Instance().Get(rid, place);
    if (ctx.Attr<bool>("use_calc_stream")) {
      auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
      stream = static_cast<platform::CUDADeviceContext *>(dev_ctx)->stream();
    } else {
      stream = comm->stream();
    }

    PADDLE_ENFORCE_LT(
        peer, comm->nranks(),
        platform::errors::InvalidArgument("The value of peer (%d) you set must "
                                          "be less than comm->nranks (%d).",
                                          peer, comm->nranks()));
    ncclDataType_t dtype = platform::ToNCCLDataType(type);

    // Recv the number of elements to receive first
    int numel = 0;
    int *numel_ptr = nullptr;
    PADDLE_ENFORCE_CUDA_SUCCESS(cudaMalloc(&numel_ptr, sizeof(int)));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::ncclRecv(static_cast<void *>(numel_ptr), 1, ncclInt,
                                    peer, comm->comm(), stream));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        cudaMemcpy(&numel, numel_ptr, sizeof(int), cudaMemcpyDeviceToHost));

    int rest_numel = 1;
    for (int i = 1; i < out_dims.size(); ++i) {
      rest_numel = rest_numel * out_dims[i];
    }
    out_dims[0] = numel / rest_numel;
    out->mutable_data<T>(out_dims, place);

    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclRecv(
        out->data<T>(), numel, dtype, peer, comm->comm(), stream));
    VLOG(3) << "rank " << comm->rank() << " recv "
            << framework::product(out->dims()) << " from " << peer;
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "PaddlePaddle should be compiled with NCCL and "
        "NCCL version >= 2.7.3 is needed."));
#endif
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OP_CUDA_KERNEL(recv_v2, ops::RecvOpV2CUDAKernel<float>,
                        ops::RecvOpV2CUDAKernel<double>,
                        ops::RecvOpV2CUDAKernel<int>,
                        ops::RecvOpV2CUDAKernel<int64_t>,
                        ops::RecvOpV2CUDAKernel<plat::float16>);