test_unique_with_counts.py 5.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest
18
import paddle.fluid as fluid
19 20 21 22 23 24 25 26 27 28 29 30
import paddle.fluid.core as core


class TestUniqueWithCountsOp(OpTest):
    def setUp(self):
        self.op_type = "unique_with_counts"
        self.init_config()

    def test_check_output(self):
        self.check_output()

    def init_config(self):
31 32 33
        self.inputs = {
            'X': np.array([2, 3, 3, 1, 5, 3], dtype='int64'),
        }
34 35
        self.attrs = {'dtype': int(core.VarDesc.VarType.INT32)}
        self.outputs = {
36 37
            'Out': np.array([2, 3, 1, 5], dtype='int64'),
            'Index': np.array([0, 1, 1, 2, 3, 1], dtype='int32'),
38
            'Count': np.array([1, 3, 1, 1], dtype='int32'),
39 40 41 42 43
        }


class TestOne(TestUniqueWithCountsOp):
    def init_config(self):
44 45 46
        self.inputs = {
            'X': np.array([2], dtype='int64'),
        }
47 48
        self.attrs = {'dtype': int(core.VarDesc.VarType.INT32)}
        self.outputs = {
49 50
            'Out': np.array([2], dtype='int64'),
            'Index': np.array([0], dtype='int32'),
51
            'Count': np.array([1], dtype='int32'),
52 53 54 55 56
        }


class TestRandom(TestUniqueWithCountsOp):
    def init_config(self):
57
        input_data = np.random.randint(0, 100, (2000,), dtype='int64')
58 59
        self.inputs = {'X': input_data}
        self.attrs = {'dtype': int(core.VarDesc.VarType.INT64)}
60 61 62
        np_unique, np_index, reverse_index = np.unique(
            self.inputs['X'], True, True
        )
63 64 65 66
        np_tuple = [(np_unique[i], np_index[i]) for i in range(len(np_unique))]
        np_tuple.sort(key=lambda x: x[1])
        target_out = np.array([i[0] for i in np_tuple], dtype='int64')
        target_index = np.array(
67 68
            [list(target_out).index(i) for i in self.inputs['X']], dtype='int64'
        )
69 70 71 72 73 74 75
        count = [0 for i in range(len(np_unique))]
        for i in range(target_index.shape[0]):
            count[target_index[i]] += 1
        target_count = np.array(count, dtype='int64')
        self.outputs = {
            'Out': target_out,
            'Index': target_index,
76
            'Count': target_count,
77 78 79
        }


80 81 82 83 84 85 86 87 88 89 90 91 92 93
class TestUniqueWithCountsRaiseError(unittest.TestCase):
    def test_errors(self):
        def test_type():
            fluid.layers.unique_with_counts([10])

        self.assertRaises(TypeError, test_type)

        def test_dtype():
            data = fluid.data(shape=[10], dtype="float16", name="input")
            fluid.layers.unique_with_counts(data)

        self.assertRaises(TypeError, test_dtype)


94 95 96
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
97 98
class TestOneGPU(TestUniqueWithCountsOp):
    def init_config(self):
99 100 101
        self.inputs = {
            'X': np.array([2], dtype='int64'),
        }
102 103
        self.attrs = {'dtype': int(core.VarDesc.VarType.INT32)}
        self.outputs = {
104 105
            'Out': np.array([2], dtype='int64'),
            'Index': np.array([0], dtype='int32'),
106
            'Count': np.array([1], dtype='int32'),
107 108 109 110 111 112 113 114
        }

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)


115 116 117
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
118 119
class TestRandomGPU(TestUniqueWithCountsOp):
    def init_config(self):
120
        input_data = np.random.randint(0, 100, (2000,), dtype='int64')
121 122
        self.inputs = {'X': input_data}
        self.attrs = {'dtype': int(core.VarDesc.VarType.INT64)}
123 124 125
        np_unique, np_index, reverse_index = np.unique(
            self.inputs['X'], True, True
        )
126 127 128 129
        np_tuple = [(np_unique[i], np_index[i]) for i in range(len(np_unique))]
        np_tuple.sort(key=lambda x: x[1])
        target_out = np.array([i[0] for i in np_tuple], dtype='int64')
        target_index = np.array(
130 131
            [list(target_out).index(i) for i in self.inputs['X']], dtype='int64'
        )
132 133 134 135 136 137 138
        count = [0 for i in range(len(np_unique))]
        for i in range(target_index.shape[0]):
            count[target_index[i]] += 1
        target_count = np.array(count, dtype='int64')
        self.outputs = {
            'Out': target_out,
            'Index': target_index,
139
            'Count': target_count,
140 141 142 143 144 145 146 147
        }

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)


148 149
if __name__ == "__main__":
    unittest.main()