test_softmax_op.py 15.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
qijun 已提交
15 16
import unittest
import numpy as np
17
from op_test import OpTest, convert_float_to_uint16
18
import paddle.fluid.core as core
19
import paddle
20
import paddle.fluid as fluid
21
import paddle.nn.functional as F
22 23

np.random.seed(10)
Q
qijun 已提交
24 25 26 27


def stable_softmax(x):
    """Compute the softmax of vector x in a numerically stable way."""
28 29
    # clip to shiftx, otherwise, when calc loss with
    # log(exp(shiftx)), may get log(0)=INF
30
    shiftx = (x - np.max(x)).clip(-64.0)
Q
qijun 已提交
31 32 33 34
    exps = np.exp(shiftx)
    return exps / np.sum(exps)


35 36 37 38 39 40 41 42 43
def ref_softmax(x, axis=None, dtype=None):
    x_t = x.copy()
    if dtype is not None:
        x_t = x_t.astype(dtype)
    if axis is None:
        axis = -1
    return np.apply_along_axis(stable_softmax, axis, x_t)


Q
qijun 已提交
44
class TestSoftmaxOp(OpTest):
F
fengjiayi 已提交
45 46 47
    def get_x_shape(self):
        return [10, 10]

D
dengkaipeng 已提交
48 49 50
    def get_axis(self):
        return -1

Q
qijun 已提交
51
    def setUp(self):
Q
fix bug  
qijun 已提交
52
        self.op_type = "softmax"
53
        self.use_cudnn = False
K
Kexin Zhao 已提交
54
        self.use_mkldnn = False
55 56
        # explicilty use float32 for ROCm, as MIOpen does not yet support float64
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
K
Kexin Zhao 已提交
57
        self.init_kernel_type()
F
fengjiayi 已提交
58
        self.shape = self.get_x_shape()
D
dengkaipeng 已提交
59
        self.axis = self.get_axis()
F
fengjiayi 已提交
60

61
        np.random.seed(0)
F
fengjiayi 已提交
62
        x = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
D
dengkaipeng 已提交
63
        out = np.apply_along_axis(stable_softmax, self.axis, x)
K
Kexin Zhao 已提交
64 65 66

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
67
        self.attrs = {
D
dengkaipeng 已提交
68
            'axis': self.axis,
69
            'use_cudnn': self.use_cudnn,
70
            'use_mkldnn': self.use_mkldnn,
71
        }
72

K
Kexin Zhao 已提交
73
    def init_kernel_type(self):
74
        pass
Q
qijun 已提交
75

Q
qijun 已提交
76
    def test_check_output(self):
77
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
78 79
        if self.use_cudnn:
            place = core.CUDAPlace(0)
80
            self.check_output_with_place(
81
                place, atol=1e-5, check_dygraph=(not self.use_mkldnn)
82
            )
83
        else:
84
            self.check_output(check_dygraph=(not self.use_mkldnn))
Q
qijun 已提交
85

Q
qijun 已提交
86
    def test_check_grad(self):
87
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
C
chengduo 已提交
88
        if self.use_cudnn or self.dtype == np.float16:
89
            place = core.CUDAPlace(0)
C
chengduo 已提交
90 91
            if core.is_float16_supported(place):
                self.check_grad_with_place(
92 93
                    place,
                    ["X"],
94 95
                    "Out",
                    max_relative_error=0.01,
96
                    check_dygraph=(not self.use_mkldnn),
97
                )
98
        else:
99 100 101 102
            self.check_grad(
                ["X"],
                "Out",
                max_relative_error=0.01,
103
                check_dygraph=(not self.use_mkldnn),
104
            )
105 106


107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
class TestSoftmaxOp_ZeroDim1(TestSoftmaxOp):
    def setUp(self):
        self.op_type = "softmax"
        self.use_cudnn = False
        self.use_mkldnn = False
        # explicilty use float32 for ROCm, as MIOpen does not yet support float64
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64

        np.random.seed(0)
        x = np.random.uniform(0.1, 1, []).astype(self.dtype)
        out = np.array(1.0).astype(self.dtype)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
        self.attrs = {
            'axis': -1,
            'use_cudnn': self.use_cudnn,
            'use_mkldnn': self.use_mkldnn,
        }


@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
class TestSoftmaxOp_ZeroDim2(TestSoftmaxOp):
    def setUp(self):
        self.op_type = "softmax"
        self.use_cudnn = True
        self.use_mkldnn = False
        # explicilty use float32 for ROCm, as MIOpen does not yet support float64
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64

        np.random.seed(0)
        x = np.random.uniform(0.1, 1, []).astype(self.dtype)
        out = np.array(1.0).astype(self.dtype)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
        self.attrs = {
            'axis': -1,
            'use_cudnn': self.use_cudnn,
            'use_mkldnn': self.use_mkldnn,
        }


F
fengjiayi 已提交
152 153 154 155 156
class TestSoftmaxOp2(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


D
dengkaipeng 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
class TestSoftmaxOp3(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 0


class TestSoftmaxOp4(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 1


class TestSoftmaxOp5(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 2


181
class TestSoftmaxOp6(TestSoftmaxOp):
D
dengkaipeng 已提交
182 183 184 185 186 187 188
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 3


189 190 191
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
192
class TestSoftmaxCUDNNOp(TestSoftmaxOp):
K
Kexin Zhao 已提交
193 194 195 196
    def init_kernel_type(self):
        self.use_cudnn = True


197 198 199
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
F
fengjiayi 已提交
200 201 202 203 204
class TestSoftmaxCUDNNOp2(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


205 206 207
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
208 209 210 211 212 213 214 215
class TestSoftmaxCUDNNOp3(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 0


216 217 218
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
219 220 221 222 223 224 225 226
class TestSoftmaxCUDNNOp4(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 1


227 228 229
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
D
dengkaipeng 已提交
230
class TestSoftmaxCUDNNOp5(TestSoftmaxCUDNNOp):
D
dengkaipeng 已提交
231 232 233
    def get_x_shape(self):
        return [2, 3, 4, 5]

G
GaoWei8 已提交
234 235 236 237
    def get_axis(self):
        return 2


238 239 240
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
241 242 243 244
class TestSoftmaxCUDNNOp6(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

D
dengkaipeng 已提交
245
    def get_axis(self):
246
        return 3
D
dengkaipeng 已提交
247 248


249 250 251
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
252 253 254 255 256
class TestSoftmaxCUDNNOp7(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]


257 258 259
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
260 261 262 263 264 265 266 267
class TestSoftmaxCUDNNOp8(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 0


268 269 270
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
271 272 273 274 275 276 277 278
class TestSoftmaxCUDNNOp9(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 1


279 280 281
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
282 283 284 285 286 287 288 289
class TestSoftmaxCUDNNOp10(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 2


290 291 292
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
293 294 295 296 297 298 299 300
class TestSoftmaxCUDNNOp11(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 3


301 302 303
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
304 305 306 307 308 309 310 311
class TestSoftmaxCUDNNOp12(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 4


312 313 314
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
315 316 317 318 319 320 321 322 323 324
class TestSoftmaxFP16Op(TestSoftmaxOp):
    def init_kernel_type(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

C
chengduo 已提交
325 326 327 328
    # FIXME: If the x_shape is [10, 10], gradient failed.
    def test_check_grad(self):
        pass

329

330 331 332
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
Z
zhupengyang 已提交
333
class TestSoftmaxFP16Op2(TestSoftmaxFP16Op):
F
fengjiayi 已提交
334
    def get_x_shape(self):
Z
zhupengyang 已提交
335
        return [2, 3, 4, 10]
336

F
fengjiayi 已提交
337

338 339 340
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
K
Kexin Zhao 已提交
341 342
class TestSoftmaxFP16CUDNNOp(TestSoftmaxOp):
    def init_kernel_type(self):
343
        self.use_cudnn = True
K
Kexin Zhao 已提交
344 345 346 347 348 349 350
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
Q
Qiao Longfei 已提交
351 352


353 354 355
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
F
fengjiayi 已提交
356 357 358 359 360
class TestSoftmaxFP16CUDNNOp2(TestSoftmaxFP16CUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


361 362 363
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
class TestSoftmaxBF16Op(OpTest):
    def setUp(self):
        self.op_type = "softmax"
        self.use_cudnn = self.init_cudnn()
        self.use_mkldnn = False
        self.dtype = np.uint16
        self.shape = [10, 10]
        self.axis = -1

        np.random.seed(0)
        x = np.random.uniform(0.1, 1, self.shape).astype(np.float32)
        out = np.apply_along_axis(stable_softmax, self.axis, x)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}
        self.attrs = {
            'axis': self.axis,
            'use_cudnn': self.use_cudnn,
384
            'use_mkldnn': self.use_mkldnn,
385 386 387 388 389 390 391
        }

    def init_cudnn(self):
        return False

    def test_check_output(self):
        place = core.CUDAPlace(0)
392
        self.check_output_with_place(place, check_dygraph=(not self.use_mkldnn))
393 394 395

    def test_check_grad(self):
        place = core.CUDAPlace(0)
396 397 398 399 400
        self.check_grad_with_place(
            place,
            ["X"],
            "Out",
            numeric_grad_delta=0.05,
401
            check_dygraph=(not self.use_mkldnn),
402
        )
403 404 405


@unittest.skipIf(
406 407
    not core.is_compiled_with_cuda()
    or core.cudnn_version() < 8100
408
    or paddle.device.cuda.get_device_capability()[0] < 8,
409
    "only support compiled with CUDA and cudnn version need larger than 8.1.0 and device's compute capability is at least 8.0",
410
)
411 412 413 414 415
class TestSoftmaxBF16CUDNNOp(TestSoftmaxBF16Op):
    def init_cudnn(self):
        return True


416
class TestSoftmaxAPI(unittest.TestCase):
417
    def setUp(self):
418 419 420 421 422 423
        self.place = (
            paddle.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else paddle.CPUPlace()
        )
        self.x_np = np.random.uniform(-1.0, 1.0, [2, 3, 4, 5]).astype('float32')
424
        self.out_ref = np.apply_along_axis(stable_softmax, -1, self.x_np)
425 426 427 428
        self.executed_api()

    def executed_api(self):
        self.softmax = F.softmax
429

430 431
    def test_static_check(self):
        with paddle.static.program_guard(paddle.static.Program()):
432
            x = paddle.fluid.data('X', self.x_np.shape, 'float32')
433
            out1 = self.softmax(x)
434 435
            m = paddle.nn.Softmax()
            out2 = m(x)
436
            exe = paddle.static.Executor(self.place)
437 438 439
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softmax(self.x_np, axis=-1, dtype=None)
        for r in res:
440
            np.testing.assert_allclose(out_ref, r, rtol=1e-05)
441

442
    def test_dygraph_check(self):
443
        paddle.disable_static(self.place)
444

445
        x = paddle.to_tensor(self.x_np)
446 447
        out1 = self.softmax(x)
        x = paddle.to_tensor(self.x_np)
448 449 450 451
        m = paddle.nn.Softmax()
        out2 = m(x)
        out_ref = ref_softmax(self.x_np, axis=-1, dtype=None)
        for r in [out1, out2]:
452
            np.testing.assert_allclose(out_ref, r.numpy(), rtol=1e-05)
453

454 455
        out1 = self.softmax(x, axis=0)
        x = paddle.to_tensor(self.x_np)
456 457 458 459
        m = paddle.nn.Softmax(axis=0)
        out2 = m(x)
        out_ref = ref_softmax(self.x_np, axis=0, dtype=None)
        for r in [out1, out2]:
460
            np.testing.assert_allclose(out_ref, r.numpy(), rtol=1e-05)
461

462 463 464 465 466 467 468
        # explicilty use float32 for ROCm, as MIOpen does not yet support float64
        if core.is_compiled_with_rocm():
            out = self.softmax(x, dtype=np.float32)
            out_ref = ref_softmax(self.x_np, axis=-1, dtype=np.float32)
        else:
            out = self.softmax(x, dtype=np.float64)
            out_ref = ref_softmax(self.x_np, axis=-1, dtype=np.float64)
469
        np.testing.assert_allclose(out_ref, out.numpy(), rtol=1e-05)
470

471
        paddle.enable_static()
472 473

    def test_error(self):
474 475
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
476
            self.assertRaises(TypeError, self.softmax, 1)
477
            # The input dtype must be float16, float32, float64.
478 479 480
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[2, 3], dtype='int32'
            )
481
            self.assertRaises(TypeError, self.softmax, x_int32)
482
            # support the input dtype is float16
483 484 485
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[2, 3], dtype='float16'
            )
486 487 488
            self.softmax(x_fp16)


489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
class TestSoftmaxAPI_ZeroDim(unittest.TestCase):
    def test_dygraph(self):
        paddle.disable_static()
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        x = paddle.rand([])
        x.stop_gradient = False

        out = paddle.nn.functional.softmax(x)
        out.backward()
        self.assertEqual(x.shape, [])
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(out.shape, [])
        self.assertEqual(out.grad.shape, [])

        paddle.enable_static()

    def test_static(self):
        main_prog = fluid.Program()
        with fluid.program_guard(main_prog, fluid.Program()):
            x = paddle.rand([])
            x.stop_gradient = False
            out = paddle.nn.functional.softmax(x)
            fluid.backward.append_backward(out)

            # Test compile shape
            self.assertEqual(x.shape, ())
            self.assertEqual(out.shape, ())

            exe = fluid.Executor()
            result = exe.run(main_prog, fetch_list=[x, out])

            # Test runtime shape
            self.assertEqual(result[0].shape, ())
            self.assertEqual(result[1].shape, ())


525 526 527
class TestSoftmaxInplaceAPI(TestSoftmaxAPI):
    def executed_api(self):
        self.softmax = F.softmax_
528 529


C
caoying03 已提交
530
if __name__ == "__main__":
Q
qijun 已提交
531
    unittest.main()