test_fill_constant_op.py 13.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
19
from op_test import OpTest
20

21
import paddle
T
tangwei12 已提交
22 23
import paddle.fluid.core as core
from paddle.fluid.op import Operator
24
import paddle.fluid as fluid
25
import numpy as np
26
from paddle.fluid import compiler, Program, program_guard
T
tangwei12 已提交
27

28

L
liym27 已提交
29
# Situation 1: Attr(shape) is a list(without tensor)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
class TestFillConstantOp1(OpTest):
    def setUp(self):
        '''Test fill_constant op with specified value
        '''
        self.op_type = "fill_constant"

        self.inputs = {}
        self.attrs = {'shape': [123, 92], 'value': 3.8}
        self.outputs = {'Out': np.full((123, 92), 3.8)}

    def test_check_output(self):
        self.check_output()


class TestFillConstantOp2(OpTest):
    def setUp(self):
        '''Test fill_constant op with default value
        '''
        self.op_type = "fill_constant"

        self.inputs = {}
        self.attrs = {'shape': [123, 92]}
        self.outputs = {'Out': np.full((123, 92), 0.0)}

    def test_check_output(self):
        self.check_output()


58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
class TestFillConstantOp3(OpTest):
    def setUp(self):
        '''Test fill_constant op with specified int64 value
        '''
        self.op_type = "fill_constant"

        self.inputs = {}
        self.attrs = {'shape': [123, 92], 'value': 10000000000}
        self.outputs = {'Out': np.full((123, 92), 10000000000)}

    def test_check_output(self):
        self.check_output()


class TestFillConstantOp4(OpTest):
    def setUp(self):
        '''Test fill_constant op with specified int value
        '''
        self.op_type = "fill_constant"

        self.inputs = {}
        self.attrs = {'shape': [123, 92], 'value': 3}
        self.outputs = {'Out': np.full((123, 92), 3)}

    def test_check_output(self):
        self.check_output()


86
class TestFillConstantOpWithSelectedRows(unittest.TestCase):
T
tangwei12 已提交
87 88 89 90 91 92 93 94 95 96 97
    def check_with_place(self, place):
        scope = core.Scope()
        # create Out Variable
        out = scope.var('Out').get_selected_rows()

        # create and run fill_constant_op operator
        fill_constant_op = Operator(
            "fill_constant", shape=[123, 92], value=3.8, Out='Out')
        fill_constant_op.run(scope, place)

        # get result from Out
T
tangwei12 已提交
98 99 100 101
        result_array = np.array(out.get_tensor())
        full_array = np.full((123, 92), 3.8, 'float32')

        self.assertTrue(np.array_equal(result_array, full_array))
T
tangwei12 已提交
102 103 104

    def test_fill_constant_with_selected_rows(self):
        places = [core.CPUPlace()]
T
tangwei12 已提交
105 106 107
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))

T
tangwei12 已提交
108 109 110 111
        for place in places:
            self.check_with_place(place)


L
liym27 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
# Situation 2: Attr(shape) is a list(with tensor)
class TestFillConstantOp1_ShapeTensorList(OpTest):
    def setUp(self):
        '''Test fill_constant op with specified value
        '''
        self.op_type = "fill_constant"
        self.init_data()
        shape_tensor_list = []
        for index, ele in enumerate(self.shape):
            shape_tensor_list.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {"ShapeTensorList": shape_tensor_list}
        self.attrs = {'shape': self.infer_shape, 'value': self.value}
        self.outputs = {'Out': np.full(self.shape, self.value)}

    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [-1, 92]
        self.value = 3.8

    def test_check_output(self):
        self.check_output()


class TestFillConstantOp2_ShapeTensorList(OpTest):
    def setUp(self):
        '''Test fill_constant op with default value
        '''
        self.op_type = "fill_constant"
        self.init_data()
        shape_tensor_list = []
        for index, ele in enumerate(self.shape):
            shape_tensor_list.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {"ShapeTensorList": shape_tensor_list}
        self.attrs = {'shape': self.infer_shape}
        self.outputs = {'Out': np.full(self.shape, 0.0)}

    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [-1, -1]

    def test_check_output(self):
        self.check_output()


class TestFillConstantOp3_ShapeTensorList(TestFillConstantOp1_ShapeTensorList):
    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [123, -1]
        self.value = 10000000000


class TestFillConstantOp4_ShapeTensorList(TestFillConstantOp1_ShapeTensorList):
    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [123, -1]
        self.value = 3


# Situation 3: shape is a tensor
class TestFillConstantOp1_ShapeTensor(OpTest):
    def setUp(self):
        '''Test fill_constant op with specified value
        '''
        self.op_type = "fill_constant"
        self.init_data()

        self.inputs = {"ShapeTensor": np.array(self.shape).astype("int32")}
        self.attrs = {'value': self.value}
        self.outputs = {'Out': np.full(self.shape, self.value)}

    def init_data(self):
        self.shape = [123, 92]
        self.value = 3.8

    def test_check_output(self):
        self.check_output()


W
wangchaochaohu 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
# Situation 4: value is a tensor
class TestFillConstantOp1_ValueTensor(OpTest):
    def setUp(self):
        '''Test fill_constant op with specified value
        '''
        self.op_type = "fill_constant"
        self.init_data()

        self.inputs = {
            "ShapeTensor": np.array(self.shape).astype("int32"),
            'ValueTensor': np.array([self.value]).astype("float32")
        }
        self.attrs = {'value': self.value + 1.0}
        self.outputs = {'Out': np.full(self.shape, self.value)}

    def init_data(self):
        self.shape = [123, 92]
        self.value = 3.8
        self.dtype = np.float32

    def test_check_output(self):
        self.check_output()


# Situation 5: value is a tensor
class TestFillConstantOp2_ValueTensor(OpTest):
    def setUp(self):
        '''Test fill_constant op with specified value
        '''
        self.op_type = "fill_constant"
        self.init_data()

        self.inputs = {
            "ShapeTensor": np.array(self.shape).astype("int32"),
            'ValueTensor': np.array([self.value]).astype("int32")
        }
        self.attrs = {'value': self.value, 'dtype': 2}
        self.outputs = {'Out': np.full(self.shape, self.value)}

    def init_data(self):
        self.shape = [123, 92]
        self.value = 3
        self.dtype = np.int32

    def test_check_output(self):
        self.check_output()


242
# Test python API
243
class TestFillConstantAPI(unittest.TestCase):
L
liym27 已提交
244
    def test_api(self):
245

246
        positive_2_int32 = fluid.layers.fill_constant([1], "int32", 2)
247
        positive_2_int64 = fluid.layers.fill_constant([1], "int64", 2)
248

249 250 251 252
        shape_tensor_int32 = fluid.data(
            name="shape_tensor_int32", shape=[2], dtype="int32")
        shape_tensor_int64 = fluid.data(
            name="shape_tensor_int64", shape=[2], dtype="int64")
L
liym27 已提交
253 254 255

        out_1 = fluid.layers.fill_constant(
            shape=[1, 2], dtype="float32", value=1.1)
256

L
liym27 已提交
257
        out_2 = fluid.layers.fill_constant(
258
            shape=[1, positive_2_int32], dtype="float32", value=1.1)
L
liym27 已提交
259 260

        out_3 = fluid.layers.fill_constant(
261 262 263 264 265 266 267
            shape=[1, positive_2_int64], dtype="float32", value=1.1)

        out_4 = fluid.layers.fill_constant(
            shape=shape_tensor_int32, dtype="float32", value=1.1)

        out_5 = fluid.layers.fill_constant(
            shape=shape_tensor_int64, dtype="float32", value=1.1)
L
liym27 已提交
268

269 270 271
        out_6 = fluid.layers.fill_constant(
            shape=shape_tensor_int64, dtype=np.float32, value=1.1)

272 273 274 275
        val1 = fluid.layers.fill_constant(
            shape=[1], dtype=np.float32, value=1.1)
        val2 = fluid.layers.fill_constant(
            shape=[1], dtype=np.float64, value=1.1)
W
wangchaochaohu 已提交
276
        out_7 = fluid.layers.fill_constant(
277 278 279 280
            shape=shape_tensor_int64, dtype=np.float32, value=val1)

        out_8 = fluid.layers.fill_constant(
            shape=shape_tensor_int64, dtype=np.float32, value=val2)
W
wangchaochaohu 已提交
281

L
liym27 已提交
282
        exe = fluid.Executor(place=fluid.CPUPlace())
283
        res_1, res_2, res_3, res_4, res_5, res_6, res_7, res_8 = exe.run(
L
liym27 已提交
284
            fluid.default_main_program(),
285 286 287 288
            feed={
                "shape_tensor_int32": np.array([1, 2]).astype("int32"),
                "shape_tensor_int64": np.array([1, 2]).astype("int64"),
            },
289 290 291
            fetch_list=[
                out_1, out_2, out_3, out_4, out_5, out_6, out_7, out_8
            ])
L
liym27 已提交
292 293 294 295

        assert np.array_equal(res_1, np.full([1, 2], 1.1, dtype="float32"))
        assert np.array_equal(res_2, np.full([1, 2], 1.1, dtype="float32"))
        assert np.array_equal(res_3, np.full([1, 2], 1.1, dtype="float32"))
296 297
        assert np.array_equal(res_4, np.full([1, 2], 1.1, dtype="float32"))
        assert np.array_equal(res_5, np.full([1, 2], 1.1, dtype="float32"))
298
        assert np.array_equal(res_6, np.full([1, 2], 1.1, dtype="float32"))
W
wangchaochaohu 已提交
299
        assert np.array_equal(res_7, np.full([1, 2], 1.1, dtype="float32"))
300 301 302 303 304 305 306 307
        assert np.array_equal(res_8, np.full([1, 2], 1.1, dtype="float32"))


class TestFillConstantImperative(unittest.TestCase):
    def test_api(self):
        with fluid.dygraph.guard():
            data1 = np.array([1, 2]).astype('int32')
            data2 = np.array([1.1]).astype('float32')
308
            data3 = np.array([88]).astype('int32')
309 310
            shape = fluid.dygraph.to_variable(data1)
            val = fluid.dygraph.to_variable(data2)
311
            value = fluid.dygraph.to_variable(data3)
312 313 314 315 316 317
            res1 = fluid.layers.fill_constant(
                shape=[1, 2], dtype='float32', value=1.1)
            res2 = fluid.layers.fill_constant(
                shape=shape, dtype='float32', value=1.1)
            res3 = fluid.layers.fill_constant(
                shape=shape, dtype='float32', value=val)
318 319
            res4 = fluid.layers.fill_constant(
                shape=shape, dtype='int32', value=value)
320 321 322 323 324 325 326 327 328
            assert np.array_equal(
                res1.numpy(), np.full(
                    [1, 2], 1.1, dtype="float32"))
            assert np.array_equal(
                res2.numpy(), np.full(
                    [1, 2], 1.1, dtype="float32"))
            assert np.array_equal(
                res3.numpy(), np.full(
                    [1, 2], 1.1, dtype="float32"))
329 330 331
            assert np.array_equal(
                res4.numpy(), np.full(
                    [1, 2], 88, dtype="int32"))
L
liym27 已提交
332 333


334
class TestFillConstantOpError(unittest.TestCase):
335 336
    def test_errors(self):
        with program_guard(Program(), Program()):
L
liym27 已提交
337
            #for ci coverage
338 339
            x1 = fluid.layers.data(name='x1', shape=[1], dtype="int16")
            self.assertRaises(
340
                TypeError,
341 342 343 344 345
                fluid.layers.fill_constant,
                shape=[1],
                value=5,
                dtype='uint4')
            self.assertRaises(
346
                TypeError,
347 348 349 350 351
                fluid.layers.fill_constant,
                shape=[1],
                value=5,
                dtype='int16',
                out=x1)
352

353 354 355 356 357 358 359 360
            self.assertRaises(
                TypeError,
                fluid.layers.fill_constant,
                shape=[1.1],
                value=5,
                dtype='float32',
                out=x1)

361
            # The argument dtype of fill_constant_op must be one of bool, float16,
362 363
            #float32, float64, int32 or int64
            x2 = fluid.layers.data(name='x2', shape=[1], dtype="int32")
L
liym27 已提交
364

365 366 367 368 369 370 371 372 373 374 375 376 377 378
            self.assertRaises(
                TypeError,
                fluid.layers.fill_constant,
                shape=[1],
                value=5,
                dtype='uint8')
            self.assertRaises(
                TypeError,
                fluid.layers.fill_constant,
                shape=[1],
                value=5,
                dtype='float64',
                out=x2)

379 380 381 382 383 384 385 386 387
            x3 = np.random.randn(100, 100).astype('int32')
            self.assertRaises(
                TypeError,
                fluid.layers.fill_constant,
                shape=[100, 100],
                value=5,
                dtype='float64',
                out=x3)

388
            # The argument shape's type of fill_constant_op must be list, tuple or Variable.
L
liym27 已提交
389 390 391 392 393
            def test_shape_type():
                fluid.layers.fill_constant(shape=1, dtype="float32", value=1)

            self.assertRaises(TypeError, test_shape_type)

394
            # The argument shape's size of fill_constant_op must not be 0.
L
liym27 已提交
395 396 397 398 399
            def test_shape_size():
                fluid.layers.fill_constant(shape=[], dtype="float32", value=1)

            self.assertRaises(AssertionError, test_shape_size)

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
            # The shape dtype of fill_constant_op must be int32 or int64.
            def test_shape_tensor_dtype():
                shape = fluid.data(
                    name="shape_tensor", shape=[2], dtype="float32")
                fluid.layers.fill_constant(
                    shape=shape, dtype="float32", value=1)

            self.assertRaises(TypeError, test_shape_tensor_dtype)

            def test_shape_tensor_list_dtype():
                shape = fluid.data(
                    name="shape_tensor_list", shape=[1], dtype="bool")
                fluid.layers.fill_constant(
                    shape=[shape, 2], dtype="float32", value=1)

            self.assertRaises(TypeError, test_shape_tensor_list_dtype)

417

418 419
if __name__ == "__main__":
    unittest.main()