initializer.py 48.4 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import math
18
from . import framework
19
from . import core
20
from .framework import _non_static_mode, in_dygraph_mode, _in_legacy_dygraph, default_main_program, _current_expected_place
21
import numpy as np
22
from .core import VarDesc
W
Wu Yi 已提交
23
from . import unique_name
24
from .data_feeder import check_variable_and_dtype, check_type, check_dtype
25
from paddle import _C_ops
26
import paddle
27

28
__all__ = [
29
    'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear',
30 31
    'MSRA', 'ConstantInitializer', 'UniformInitializer', 'NormalInitializer',
    'TruncatedNormalInitializer', 'XavierInitializer', 'BilinearInitializer',
32
    'MSRAInitializer', 'NumpyArrayInitializer', 'set_global_initializer'
33
]
34

35 36 37
_global_weight_initializer_ = None
_global_bias_initializer_ = None

38 39 40 41 42 43 44 45 46 47

class Initializer(object):
    """Base class for variable initializers

    Defines the common interface of variable initializers.
    They add operations to the init program that are used
    to initialize variables. Users should not use this class
    directly, but need to use one of its implementations.
    """

W
whs 已提交
48
    def __init__(self):
49 50
        pass

51
    def __call__(self, param, block=None):
52 53 54 55
        """Add corresponding initialization operations to the network
        """
        raise NotImplementedError()

56 57
    def _check_block(self, block):
        if block is None:
58
            block = default_main_program().global_block()
59 60 61

        return block

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    def _compute_fans(self, var):
        """Compute the fan_in and the fan_out for layers

        This method computes the fan_in and the fan_out
        for neural network layers, if not specified. It is
        not possible to perfectly estimate fan_in and fan_out.
        This method will estimate it correctly for matrix multiply and
        convolutions.

        Args:
            var: variable for which fan_in and fan_out have to be computed

        Returns:
            tuple of two integers (fan_in, fan_out)
        """
        shape = var.shape
        if not shape or len(shape) == 0:
            fan_in = fan_out = 1
        elif len(shape) == 1:
            fan_in = fan_out = shape[0]
        elif len(shape) == 2:
            # This is the case for simple matrix multiply
            fan_in = shape[0]
            fan_out = shape[1]
        else:
            # Assume this to be a convolutional kernel
            # In PaddlePaddle, the shape of the kernel is like:
            # [num_filters, num_filter_channels, ...] where the remaining
            # dimensions are the filter_size
            receptive_field_size = np.prod(shape[2:])
            fan_in = shape[1] * receptive_field_size
            fan_out = shape[0] * receptive_field_size

        return (fan_in, fan_out)

97 98 99

class ConstantInitializer(Initializer):
    """Implements the constant initializer
100 101

    Args:
D
Double_V 已提交
102
        value (float32): constant value to initialize the variable 
103 104 105 106

    Examples:
        .. code-block:: python

107 108 109
            import paddle
            import paddle.fluid as fluid
            paddle.enable_static()
D
Double_V 已提交
110
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
111 112 113 114
            fc = fluid.layers.fc(
                input=x,
                size=10,
                param_attr=fluid.initializer.Constant(value=2.0))
115

116 117
    """

118
    def __init__(self, value=0.0, force_cpu=False):
119 120 121
        assert value is not None
        super(ConstantInitializer, self).__init__()
        self._value = value
122
        self._force_cpu = force_cpu
123

124 125
    def __call__(self, var, block=None):
        """Initialize the input tensor with constant.
126 127

        Args:
128 129 130
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
131 132

        Returns:
133
            The initialization op
134
        """
135 136
        block = self._check_block(block)

137 138
        assert (isinstance(var, framework.Variable)
                or isinstance(var, framework.EagerParamBase))
139
        assert isinstance(block, framework.Block)
140

J
Jiabin Yang 已提交
141
        if framework._non_static_mode():
142 143
            _C_ops.fill_constant(var, 'value', float(self._value),
                                 'force_cpu', self._force_cpu, 'dtype',
144 145
                                 int(var.dtype), 'str_value',
                                 str(float(self._value)), 'shape', var.shape)
146 147 148
            return None
        else:
            # fill constant should set the "str_value" to preserve precision
149 150 151 152 153 154 155 156 157 158
            op = block.append_op(type="fill_constant",
                                 outputs={"Out": var},
                                 attrs={
                                     "shape": var.shape,
                                     "dtype": int(var.dtype),
                                     "value": float(self._value),
                                     'str_value': str(float(self._value)),
                                     'force_cpu': self._force_cpu
                                 },
                                 stop_gradient=True)
159

160
            var.op = op
161
            return op
162 163 164


class UniformInitializer(Initializer):
165
    """Implements the random uniform distribution initializer
166 167 168 169 170

    Args:
        low (float): lower boundary of the uniform distribution
        high (float): upper boundary of the uniform distribution
        seed (int): random seed
171 172 173 174 175 176
        diag_num (int): the number of diagonal elements to initialize.
            If set to 0, diagonal initialization will be not performed.
        diag_step (int): Step size between two diagonal elements,
            which is generally the width of the square matrix.
        diag_val (float): the value of the diagonal element to be initialized,
            default 1.0. It takes effect only if the diag_num is greater than 0.
177 178 179 180

    Examples:
        .. code-block:: python

X
xiaoting 已提交
181
            import paddle.fluid as fluid
182
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
183
            fc = fluid.layers.fc(input=x, size=10,
184
    		param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
185 186
    """

187 188 189 190 191 192 193
    def __init__(self,
                 low=-1.0,
                 high=1.0,
                 seed=0,
                 diag_num=0,
                 diag_step=0,
                 diag_val=1.0):
194 195
        assert low is not None
        assert high is not None
196
        assert high >= low
197
        assert seed is not None
198 199 200 201 202
        assert diag_num is not None
        assert diag_step is not None
        assert diag_val is not None
        if diag_num > 0 or diag_step > 0:
            assert (diag_num > 0 and diag_step > 0)
203 204 205 206
        super(UniformInitializer, self).__init__()
        self._low = low
        self._high = high
        self._seed = seed
207 208 209
        self._diag_num = diag_num
        self._diag_step = diag_step
        self._diag_val = diag_val
210

211 212
    def __call__(self, var, block=None):
        """Initialize the input tensor with Uniform distribution.
213 214

        Args:
215 216 217
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
218 219

        Returns:
220
            The initialization op
221
        """
222 223
        block = self._check_block(block)

224
        assert isinstance(block, framework.Block)
225 226
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
227 228
                                 "uniform_random")

D
dzhwinter 已提交
229 230
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
231

X
polish  
Xin Pan 已提交
232
        # to be compatible of fp16 initializers
233
        if var.dtype == VarDesc.VarType.FP16:
W
Wu Yi 已提交
234
            out_dtype = VarDesc.VarType.FP32
235 236 237 238 239 240
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['uniform_random', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
W
Wu Yi 已提交
241 242 243 244
        else:
            out_dtype = var.dtype
            out_var = var

J
Jiabin Yang 已提交
245
        if framework._non_static_mode():
246 247 248 249 250 251 252
            out_var = _C_ops.uniform_random(
                'shape', var.shape, 'min', self._low, 'max', self._high, 'seed',
                self._seed, 'dtype', out_dtype, 'diag_num', self._diag_num,
                'diag_step', self._diag_step, 'diag_val', self._diag_val)
            if var.dtype == VarDesc.VarType.FP16:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
253
                var_tmp._share_underline_tensor_to(var)
254
            else:
255
                out_var._share_underline_tensor_to(var)
256 257
            return None
        else:
258 259 260 261 262 263 264 265 266 267 268 269 270 271
            op = block.append_op(type="uniform_random",
                                 inputs={},
                                 outputs={"Out": out_var},
                                 attrs={
                                     "shape": var.shape,
                                     "dtype": out_dtype,
                                     "min": self._low,
                                     "max": self._high,
                                     "seed": self._seed,
                                     "diag_num": self._diag_num,
                                     "diag_step": self._diag_step,
                                     "diag_val": self._diag_val
                                 },
                                 stop_gradient=True)
272 273

            if var.dtype == VarDesc.VarType.FP16:
274 275 276 277 278 279 280
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
W
Wu Yi 已提交
281

282
            var.op = op
283
            return op
284 285 286


class NormalInitializer(Initializer):
287 288 289 290 291 292 293 294 295 296
    """Implements the Random Normal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xsrobin 已提交
297
            import paddle.fluid as fluid
298
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
X
xsrobin 已提交
299 300
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))
301

302 303 304 305 306 307 308 309 310 311 312
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
        super(NormalInitializer, self).__init__()
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

313 314
    def __call__(self, var, block=None):
        """Initialize the input tensor with Normal distribution.
315 316

        Args:
317 318 319
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
320 321

        Returns:
322
            The initialization op
323
        """
324 325
        block = self._check_block(block)

326
        assert isinstance(block, framework.Block)
327

328 329
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
330
                                 "guassian_random")
331

332 333 334
        # to be compatible of fp16 initalizers
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
            out_dtype = VarDesc.VarType.FP32
335 336 337 338 339 340
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['normal_init', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
341 342 343 344
        else:
            out_dtype = var.dtype
            out_var = var

D
dzhwinter 已提交
345 346
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
347

348 349 350 351 352 353 354 355 356 357 358 359 360 361
        if in_dygraph_mode():
            place = _current_expected_place()
            out_var = _C_ops.final_state_gaussian_random(
                var.shape, self._mean, self._std_dev, self._seed, out_dtype,
                place)

            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                var_tmp = _C_ops.final_state_cast(out_var, var.dtype)
                var_tmp._share_underline_tensor_to(var)
            else:
                out_var._share_underline_tensor_to(var)
            return None

        if _in_legacy_dygraph():
362 363 364 365
            out_var = _C_ops.gaussian_random('shape', var.shape, 'dtype',
                                             out_dtype, 'mean', self._mean,
                                             'std', self._std_dev, 'seed',
                                             self._seed, 'use_mkldnn', False)
366 367 368 369 370 371 372

            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
                var_tmp._share_underline_tensor_to(var)
            else:
                out_var._share_underline_tensor_to(var)
373 374
            return None
        else:
375 376 377 378 379 380 381 382 383 384 385
            op = block.append_op(type="gaussian_random",
                                 outputs={"Out": out_var},
                                 attrs={
                                     "shape": var.shape,
                                     "dtype": out_dtype,
                                     "mean": self._mean,
                                     "std": self._std_dev,
                                     "seed": self._seed,
                                     "use_mkldnn": False
                                 },
                                 stop_gradient=True)
386

387
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
388 389 390 391 392 393 394
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
395
            var.op = op
396
            return op
397 398


399 400 401 402 403 404 405 406 407 408 409
class TruncatedNormalInitializer(Initializer):
    """Implements the Random TruncatedNormal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xiaoting 已提交
410
            import paddle.fluid as fluid
411
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
412 413 414 415 416 417 418 419
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
W
whs 已提交
420
        super(TruncatedNormalInitializer, self).__init__()
421 422 423 424
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

425 426
    def __call__(self, var, block=None):
        """Initialize the input tensor with TruncatedNormal distribution.
427 428

        Args:
429 430 431
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
432 433

        Returns:
434
            The initialization op
435
        """
436 437
        block = self._check_block(block)

438 439
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
440

441 442
        if self._seed == 0:
            self._seed = block.program.random_seed
443 444

        # to be compatible of fp16 initalizers
445
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
446
            out_dtype = VarDesc.VarType.FP32
447 448 449 450 451 452
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['truncated_gaussian_random', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
453 454 455 456
        else:
            out_dtype = var.dtype
            out_var = var

457 458 459 460 461 462 463 464 465 466 467 468
        if in_dygraph_mode():
            out_var = _C_ops.final_state_truncated_gaussian_random(
                var.shape, self._mean, self._std_dev, self._seed, out_dtype,
                _current_expected_place())
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                var_tmp = _C_ops.final_state_cast(out_var, var.dtype)
                var_tmp._share_underline_tensor_to(var)
            else:
                out_var._share_underline_tensor_to(var)
            return None

        if _in_legacy_dygraph():
469 470 471 472 473
            out_var = _C_ops.truncated_gaussian_random('shape', var.shape,
                                                       'dtype', out_dtype,
                                                       'mean', self._mean,
                                                       'std', self._std_dev,
                                                       'seed', self._seed)
474 475 476
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
477
                var_tmp._share_underline_tensor_to(var)
478
            else:
479
                out_var._share_underline_tensor_to(var)
480 481
            return None
        else:
482 483 484 485 486 487 488 489 490 491
            op = block.append_op(type="truncated_gaussian_random",
                                 outputs={"Out": out_var},
                                 attrs={
                                     "shape": var.shape,
                                     "dtype": out_dtype,
                                     "mean": self._mean,
                                     "std": self._std_dev,
                                     "seed": self._seed
                                 },
                                 stop_gradient=True)
492

493
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
494 495 496 497 498 499 500
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
501
            var.op = op
502
            return op
503 504


505
class XavierInitializer(Initializer):
506
    r"""
507
    This class implements the Xavier weight initializer from the paper
Q
qiaolongfei 已提交
508 509 510
    `Understanding the difficulty of training deep feedforward neural
    networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
    by Xavier Glorot and Yoshua Bengio.
511 512 513

    This initializer is designed to keep the scale of the gradients
    approximately same in all the layers. In case of Uniform distribution,
Q
qiaolongfei 已提交
514 515 516 517 518 519
    the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in + fan\_out}}

520
    In case of Normal distribution, the mean is 0 and the standard deviation
Q
qiaolongfei 已提交
521
    is
522

Q
qiaolongfei 已提交
523
    .. math::
524

Q
qiaolongfei 已提交
525
        \sqrt{\\frac{2.0}{fan\_in + fan\_out}}
526 527


Q
qiaolongfei 已提交
528
    Args:
X
xiaoting 已提交
529 530
        uniform (bool,default True): whether to use uniform ,if False use normal distribution
        fan_in (float,default None): fan_in for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
531
                inferred from the variable.
X
xiaoting 已提交
532
        fan_out (float,default None): fan_out for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
533 534 535 536 537 538 539 540 541
                 inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in and fan_out to None for most cases.

    Examples:
        .. code-block:: python

X
xiaoting 已提交
542
            import paddle.fluid as fluid
X
xiaoting 已提交
543
            queries = fluid.data(name='x', shape=[None,1], dtype='float32')
Q
qiaolongfei 已提交
544 545 546 547 548 549 550
            fc = fluid.layers.fc(
                input=queries, size=10,
                param_attr=fluid.initializer.Xavier(uniform=False))

    """

    def __init__(self, uniform=True, fan_in=None, fan_out=None, seed=0):
551 552 553 554 555 556 557 558
        assert uniform is not None
        assert seed is not None
        super(XavierInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._fan_out = fan_out
        self._seed = seed

559 560
    def __call__(self, var, block=None):
        """Initialize the input tensor with Xavier initialization.
561 562

        Args:
563 564 565
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
566 567

        Returns:
568
            The initialization op
569
        """
570 571
        block = self._check_block(block)

572
        assert isinstance(block, framework.Block)
573 574
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
575 576
                                 "xavier_init")

577 578 579 580 581 582
        f_in, f_out = self._compute_fans(var)

        # If fan_in and fan_out are passed, use them
        fan_in = f_in if self._fan_in is None else self._fan_in
        fan_out = f_out if self._fan_out is None else self._fan_out

D
dzhwinter 已提交
583 584 585
        if self._seed == 0:
            self._seed = block.program.random_seed

586
        # to be compatible of fp16 initalizers
587 588
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
589
            out_dtype = VarDesc.VarType.FP32
590 591 592 593 594 595
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['xavier_init', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
596 597 598 599
        else:
            out_dtype = var.dtype
            out_var = var

J
Jiabin Yang 已提交
600
        if framework._non_static_mode():
601
            if self._uniform:
602
                limit = math.sqrt(6.0 / float(fan_in + fan_out))
603 604 605 606 607 608 609 610 611
                if in_dygraph_mode():
                    out_var = _C_ops.final_state_uniform_random(
                        out_var.shape, out_dtype, -limit, limit, self._seed,
                        _current_expected_place())
                elif _in_legacy_dygraph():
                    out_var = _C_ops.uniform_random('shape', out_var.shape,
                                                    'min', -limit, 'max', limit,
                                                    'seed', self._seed, 'dtype',
                                                    out_dtype)
612
            else:
613
                std = math.sqrt(2.0 / float(fan_in + fan_out))
614 615 616 617 618 619

                if in_dygraph_mode():
                    place = _current_expected_place()
                    out_var = _C_ops.final_state_gaussian_random(
                        out_var.shape, 0.0, std, self._seed, out_dtype, place)
                else:
620 621 622 623
                    out_var = _C_ops.gaussian_random('shape', out_var.shape,
                                                     'dtype', out_dtype, 'mean',
                                                     0.0, 'std', std, 'seed',
                                                     self._seed)
624 625 626

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
627 628 629 630 631
                if in_dygraph_mode():
                    var_tmp = _C_ops.final_state_cast(out_var, var.dtype)
                elif _in_legacy_dygraph():
                    var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                          'out_dtype', var.dtype)
632
                var_tmp._share_underline_tensor_to(var)
633
            else:
634
                out_var._share_underline_tensor_to(var)
635
            return None
636
        else:
637
            if self._uniform:
638
                limit = math.sqrt(6.0 / float(fan_in + fan_out))
639 640 641 642 643 644 645 646 647 648 649
                op = block.append_op(type="uniform_random",
                                     inputs={},
                                     outputs={"Out": out_var},
                                     attrs={
                                         "shape": out_var.shape,
                                         "dtype": out_dtype,
                                         "min": -limit,
                                         "max": limit,
                                         "seed": self._seed
                                     },
                                     stop_gradient=True)
650
            else:
651
                std = math.sqrt(2.0 / float(fan_in + fan_out))
652 653 654 655 656 657 658 659 660 661
                op = block.append_op(type="gaussian_random",
                                     outputs={"Out": out_var},
                                     attrs={
                                         "shape": out_var.shape,
                                         "dtype": out_dtype,
                                         "mean": 0.0,
                                         "std": std,
                                         "seed": self._seed
                                     },
                                     stop_gradient=True)
662 663 664

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
665 666 667 668 669 670 671
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
672

673
            var.op = op
674
            return op
675 676 677


class MSRAInitializer(Initializer):
678
    r"""Implements the MSRA initializer a.k.a. Kaiming Initializer
679 680

    This class implements the weight initialization from the paper
681 682 683 684 685 686 687 688
    `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
    ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
    by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
    robust initialization method that particularly considers the rectifier
    nonlinearities. In case of Uniform distribution, the range is [-x, x], where

    .. math::

689
        x = gain \times \sqrt{\frac{3}{fan\_in}}
690 691 692 693 694 695

    In case of Normal distribution, the mean is 0 and the standard deviation
    is

    .. math::

696
        \frac{gain}{\sqrt{{fan\_in}}}
697 698

    Args:
699 700 701
        uniform (bool, optional): whether to use uniform or normal distribution
        fan_in (float32|None, optional): fan_in (in_features) of trainable Tensor, If None, it will be infered automaticly. If you don't want to use in_features of the Tensor, you can set the value of 'fan_in' smartly by yourself. default is None.
        seed (int32, optional): random seed.
702 703
        negative_slope (float, optional): negative_slope (only used with leaky_relu). default is 0.0.
        nonlinearity(str, optional): the non-linear function. default is relu.
704 705 706 707 708 709

    Note:
        It is recommended to set fan_in to None for most cases.

    Examples:
        .. code-block:: python
X
xsrobin 已提交
710

711
            import paddle
X
xsrobin 已提交
712
            import paddle.fluid as fluid
713
            paddle.enable_static()
D
Double_V 已提交
714
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
X
xsrobin 已提交
715 716
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.MSRA(uniform=False))
717

718 719
    """

720 721 722 723 724 725
    def __init__(self,
                 uniform=True,
                 fan_in=None,
                 seed=0,
                 negative_slope=0,
                 nonlinearity='relu'):
726 727 728 729 730 731 732 733
        """Constructor for MSRAInitializer
        """
        assert uniform is not None
        assert seed is not None
        super(MSRAInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._seed = seed
734 735
        self._negative_slope = negative_slope
        self._nonlinearity = nonlinearity
736

737 738
    def __call__(self, var, block=None):
        """Initialize the input tensor with MSRA initialization.
739 740

        Args:
741 742 743
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
744 745

        Returns:
746
            The initialization op
747
        """
748 749
        block = self._check_block(block)

750 751 752 753 754 755 756
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in is passed, use it
        fan_in = f_in if self._fan_in is None else self._fan_in

D
dzhwinter 已提交
757 758 759
        if self._seed == 0:
            self._seed = block.program.random_seed

760
        # to be compatible of fp16 initalizers
761 762
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
763
            out_dtype = VarDesc.VarType.FP32
764 765 766 767 768 769
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['masra_init', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
770 771 772 773
        else:
            out_dtype = var.dtype
            out_var = var

J
Jiabin Yang 已提交
774
        if framework._non_static_mode():
775
            if self._uniform:
776 777 778
                gain = calculate_gain(self._nonlinearity, self._negative_slope)
                limit = gain * math.sqrt(3.0 / float(fan_in))

779 780 781 782 783
                out_var = _C_ops.uniform_random('shape', out_var.shape, 'min',
                                                -limit, 'max', limit, 'seed',
                                                self._seed, 'dtype',
                                                int(out_dtype))
            else:
784 785
                gain = calculate_gain(self._nonlinearity, self._negative_slope)
                std = gain / math.sqrt(float(fan_in))
786 787 788 789 790
                if in_dygraph_mode():
                    place = _current_expected_place()
                    out_var = _C_ops.final_state_gaussian_random(
                        out_var.shape, 0.0, std, self._seed, out_dtype, place)
                else:
791 792 793 794 795
                    out_var = _C_ops.gaussian_random('shape',
                                                     out_var.shape, 'dtype',
                                                     int(out_dtype), 'mean',
                                                     0.0, 'std', std, 'seed',
                                                     self._seed)
796 797 798 799 800

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
801
                var_tmp._share_underline_tensor_to(var)
802
            else:
803
                out_var._share_underline_tensor_to(var)
804
            return None
805
        else:
806
            if self._uniform:
807 808
                gain = calculate_gain(self._nonlinearity, self._negative_slope)
                limit = gain * math.sqrt(3.0 / float(fan_in))
809 810 811 812 813 814 815 816 817 818 819
                op = block.append_op(type="uniform_random",
                                     inputs={},
                                     outputs={"Out": out_var},
                                     attrs={
                                         "shape": out_var.shape,
                                         "dtype": int(out_dtype),
                                         "min": -limit,
                                         "max": limit,
                                         "seed": self._seed
                                     },
                                     stop_gradient=True)
820 821

            else:
822 823
                gain = calculate_gain(self._nonlinearity, self._negative_slope)
                std = gain / math.sqrt(float(fan_in))
824 825 826 827 828 829 830 831 832 833
                op = block.append_op(type="gaussian_random",
                                     outputs={"Out": out_var},
                                     attrs={
                                         "shape": out_var.shape,
                                         "dtype": int(out_dtype),
                                         "mean": 0.0,
                                         "std": std,
                                         "seed": self._seed
                                     },
                                     stop_gradient=True)
834 835 836

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
837 838 839 840 841 842 843
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
844

845
            var.op = op
846
            return op
847 848


849
class BilinearInitializer(Initializer):
850
    """
851 852 853
    This initializer can be used in transposed convolution operator to
    act as upsampling. Users can upsample a feature map with shape of
    (B, C, H, W) by any integer factor. The usage is:
854 855 856 857 858

    Examples:

        .. code-block:: python

859
            import math
860 861 862 863 864

            import paddle
            import paddle.nn as nn
            from paddle.regularizer import L2Decay

X
xsrobin 已提交
865 866
            factor = 2
            C = 2
D
Double_V 已提交
867 868
            B = 8
            H = W = 32
869 870 871 872
            w_attr = paddle.ParamAttr(learning_rate=0.,
                                      regularizer=L2Decay(0.),
                                      initializer=nn.initializer.Bilinear())
            data = paddle.rand([B, 3, H, W], dtype='float32')
C
cnn 已提交
873
            conv_up = nn.Conv2DTranspose(3,
874 875 876 877 878 879 880 881 882 883 884
                                         out_channels=C,
                                         kernel_size=2 * factor - factor % 2,
                                         padding=int(
                                             math.ceil((factor - 1) / 2.)),
                                         stride=factor,
                                         weight_attr=w_attr,
                                         bias_attr=False)
            x = conv_up(data)

    Where, `out_channels=C` and `groups=C` means this is channel-wise transposed
    convolution. The filter shape will be (C, 1, K, K) where K is `kernel_size`,
885 886 887 888
    This initializer will set a (K, K) interpolation kernel for every channel
    of the filter identically. The resulting shape of the output feature map
    will be (B, C, factor * H, factor * W). Note that the learning rate and the
    weight decay are set to 0 in order to keep coefficient values of bilinear
889 890
    interpolation unchanged during training.

891 892 893 894 895 896 897
    """

    def __init__(self):
        """Constructor for BilinearInitializer.
        """
        super(BilinearInitializer, self).__init__()

898 899
    def __call__(self, var, block=None):
        """Initialize the input tensor with Bilinear initialization.
900 901

        Args:
902 903 904
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
905 906

        Returns:
907
            The initialization op
908
        """
909 910
        block = self._check_block(block)

911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
        if not isinstance(var, framework.Variable):
            raise ValueError("var must be framework.Variable.")

        if not isinstance(block, framework.Block):
            raise ValueError("block must be framework.Block.")

        shape = var.shape
        if len(shape) != 4:
            raise ValueError("the length of shape must be 4.")
        if shape[2] != shape[3]:
            raise ValueError("shape[2] must be equal to shape[3].")

        weight = np.zeros(np.prod(var.shape), dtype='float32')
        size = shape[3]
        # factor
        f = np.ceil(size / 2.)
        # center
        c = (2 * f - 1 - f % 2) / (2. * f)
        for i in range(np.prod(shape)):
            x = i % size
            y = (i / size) % size
            weight[i] = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
        weight = np.reshape(weight, shape)

935
        # to be compatible of fp16 initalizers
936 937 938
        if var.dtype in [
                VarDesc.VarType.FP16, VarDesc.VarType.BF16, VarDesc.VarType.FP64
        ]:
939
            out_dtype = VarDesc.VarType.FP32
940 941 942 943 944 945
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['bilinear_init', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
946 947 948 949 950
        else:
            out_dtype = var.dtype
            out_var = var

        if out_dtype == VarDesc.VarType.FP32:
951 952 953
            value_name = "fp32_values"
            values = [float(v) for v in weight.flat]
        else:
954 955
            raise TypeError("Unsupported dtype %s", var.dtype)

956 957
        if np.prod(shape) > 1024 * 1024:
            raise ValueError("The size of input is too big. ")
958

J
Jiabin Yang 已提交
959
        if framework._non_static_mode():
960 961
            _C_ops.assign_value(out_var, 'shape', list(shape), 'dtype',
                                out_dtype, value_name, values)
962 963 964 965 966 967
            if var.dtype in [
                    VarDesc.VarType.FP16, VarDesc.VarType.BF16,
                    VarDesc.VarType.FP64
            ]:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
968
                var_tmp._share_underline_tensor_to(var)
969
            else:
970
                out_var._share_underline_tensor_to(var)
971 972
            return None
        else:
973 974 975 976 977 978 979
            op = block.append_op(type='assign_value',
                                 outputs={'Out': [out_var]},
                                 attrs={
                                     'dtype': out_dtype,
                                     'shape': list(shape),
                                     value_name: values
                                 })
980 981 982 983 984

            if var.dtype in [
                    VarDesc.VarType.FP16, VarDesc.VarType.BF16,
                    VarDesc.VarType.FP64
            ]:
985 986 987 988 989 990 991
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
992

993
            var.op = op
994
            return op
995 996


997 998
class NumpyArrayInitializer(Initializer):
    """Init an parameter with an numpy array
999
    This op initialize the variable by numpy array.
1000 1001 1002 1003

    Args:
        value (numpy): numpy array to initialize the variable

1004 1005 1006
    Returns:
        A Tensor variable initialized by numpy.

1007 1008 1009
    Examples:
        .. code-block:: python

1010
            import paddle.fluid as fluid
1011 1012
            import numpy
            x = fluid.data(name="x", shape=[2, 1], dtype='float32')
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
    """

    def __init__(self, value):
        import numpy
        assert isinstance(value, numpy.ndarray)
        super(NumpyArrayInitializer, self).__init__()
        self._value = value

1023 1024
    def __call__(self, var, block=None):
        """Initialize the input tensor with Numpy array.
1025 1026

        Args:
1027 1028 1029
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
1030 1031

        Returns:
1032
            The initialization op
1033
        """
1034 1035
        block = self._check_block(block)

1036 1037
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
1038 1039

        # to be compatible of fp16 initalizers
1040
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
1041 1042
            out_dtype = VarDesc.VarType.FP32
            np_value = self._value.astype("float32")
1043 1044 1045 1046 1047 1048
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['numpy_array_init', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
1049 1050 1051 1052 1053 1054
        else:
            out_var = var
            out_dtype = var.dtype
            np_value = self._value

        if out_dtype == VarDesc.VarType.FP32:
1055
            value_name = "fp32_values"
1056 1057
            values = [float(v) for v in np_value.flat]
        elif out_dtype == VarDesc.VarType.INT32:
1058
            value_name = "int32_values"
1059
            values = [int(v) for v in np_value.flat]
1060 1061
        else:
            raise ValueError("Unsupported dtype %s", self._value.dtype)
X
Xin Pan 已提交
1062
        if self._value.size > 1024 * 1024 * 1024:
1063 1064
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
1065

J
Jiabin Yang 已提交
1066
        if framework._non_static_mode():
1067 1068
            _C_ops.assign_value(out_var, 'shape', list(self._value.shape),
                                'dtype', out_dtype, value_name, values)
1069 1070 1071
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
1072
                var_tmp._share_underline_tensor_to(var)
1073
            else:
1074
                out_var._share_underline_tensor_to(var)
1075 1076
            return None
        else:
1077 1078 1079 1080 1081 1082 1083 1084
            op = block.append_op(type='assign_value',
                                 outputs={'Out': out_var},
                                 attrs={
                                     'dtype': out_dtype,
                                     'shape': list(self._value.shape),
                                     value_name: values
                                 },
                                 stop_gradient=True)
1085 1086

            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
1087 1088 1089 1090 1091 1092 1093
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
1094

1095
            var.op = op
1096
            return op
1097 1098


1099 1100 1101 1102 1103 1104 1105
def set_global_initializer(weight_init, bias_init=None):
    """
    This API is used to set up global model parameter initializer in framework.

    After this API is invoked, the global initializer will takes effect in subsequent code.

    The model parameters include ``weight`` and ``bias`` . In the framework, they correspond 
1106
    to ``paddle.ParamAttr`` , which is inherited from ``paddle.Tensor`` , and is a persistable Variable.
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
    This API only takes effect for model parameters, not for variables created through apis such as 
    :ref:`api_fluid_layers_create_global_var` , :ref:`api_fluid_layers_create_tensor`.
    
    If the initializer is also set up by ``param_attr`` or ``bias_attr`` when creating a network layer,
    the global initializer setting here will not take effect because it has a lower priority.

    If you want to cancel the global initializer in framework, please set global initializer to ``None`` .

    Args:
        weight_init (Initializer): set the global initializer for ``weight`` of model parameters.
        bias_init (Initializer, optional): set the global initializer for ``bias`` of model parameters. 
            Default: None.

    Returns:
        None

    Examples:
        .. code-block:: python

1126 1127 1128 1129 1130
            import paddle
            import paddle.nn as nn

            nn.initializer.set_global_initializer(nn.initializer.Uniform(), nn.initializer.Constant())
            x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
1131 1132 1133

            # The weight of conv1 is initialized by Uniform
            # The bias of conv1 is initialized by Constant
1134 1135
            conv1 = nn.Conv2D(4, 6, (3, 3))
            y_var1 = conv1(x_var)
1136 1137 1138 1139

            # If set param_attr/bias_attr too, global initializer will not take effect
            # The weight of conv2 is initialized by Xavier
            # The bias of conv2 is initialized by Normal
1140 1141 1142 1143
            conv2 = nn.Conv2D(4, 6, (3, 3), 
                weight_attr=nn.initializer.XavierUniform(),
                bias_attr=nn.initializer.Normal())
            y_var2 = conv2(x_var)
1144 1145

            # Cancel the global initializer in framework, it will takes effect in subsequent code
1146
            nn.initializer.set_global_initializer(None)
1147
    """
1148

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
    check_type(weight_init, 'weight_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_weight_initializer_
    _global_weight_initializer_ = weight_init

    check_type(bias_init, 'bias_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_bias_initializer_
    _global_bias_initializer_ = bias_init


def _global_weight_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_weight_initializer_


def _global_bias_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_bias_initializer_


1174 1175
def calculate_gain(nonlinearity, param=None):
    """
1176 1177
    Get the recommended ``gain`` value of some nonlinearity function. ``gain`` value can be used in some 
    ``paddle.nn.initializer`` api to adjust the initialization value.
1178 1179

    Args:
1180 1181
        nonlinearity(str): name of nonlinearity activation function. If it is a linear function, such as: 
            `linear/conv1d/conv2d/conv3d/conv1d_transpose/conv2d_transpose/conv3d_transpose` , 1.0 will be returned.
1182
        param(bool|int|float, optional): optional parameter for somme nonlinearity function. Now, it only applies to 
1183
            'leaky_relu'. Default: None, it will be calculated as 0.01 in the formula.
1184 1185

    Returns:
1186
        A float value, which is the recommended gain for this nonlinearity function.
1187 1188 1189

    Examples:
        .. code-block:: python
1190

1191 1192 1193
            import paddle
            gain = paddle.nn.initializer.calculate_gain('tanh') # 5.0 / 3
            gain = paddle.nn.initializer.calculate_gain('leaky_relu', param=1.0) # 1.0 = math.sqrt(2.0 / (1+param^2))
1194
            initializer = paddle.nn.initializer.Orthogonal(gain)
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207

    """
    if param is None:
        param = 0.01
    else:
        assert isinstance(param, (bool, int, float))
        param = float(param)
    recommended_gain = {
        'sigmoid': 1,
        'linear': 1,
        'conv1d': 1,
        'conv2d': 1,
        'conv3d': 1,
1208 1209 1210
        'conv1d_transpose': 1,
        'conv2d_transpose': 1,
        'conv3d_transpose': 1,
1211 1212 1213 1214 1215 1216 1217 1218
        'tanh': 5.0 / 3,
        'relu': math.sqrt(2.0),
        'leaky_relu': math.sqrt(2.0 / (1 + param**2)),
        'selu': 3.0 / 4
    }
    if nonlinearity in recommended_gain.keys():
        return recommended_gain[nonlinearity]
    else:
1219 1220 1221
        raise ValueError(
            "nonlinearity function {} is not suppported now.".format(
                nonlinearity))
1222 1223


1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
#                          param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
Constant = ConstantInitializer
Uniform = UniformInitializer
Normal = NormalInitializer
1236
TruncatedNormal = TruncatedNormalInitializer
1237 1238
Xavier = XavierInitializer
MSRA = MSRAInitializer
1239
Bilinear = BilinearInitializer