var_conv_2d_op.cc 19.4 KB
Newer Older
K
Kevin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/var_conv_2d_op.h"
16

17
#include <memory>
K
Kevin 已提交
18
#include <vector>
19

K
Kevin 已提交
20
#include "paddle/fluid/platform/dynload/mklml.h"
21 22
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/math_function.h"
K
Kevin 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using LoD = framework::LoD;

void VarConv2dOpMaker::Make() {
  AddInput("X",
           "X (LoDTensor, default LoDTensor<float>) Input variable which "
           "should contain lod information.");
  AddInput("ROW", "(LoDTensor) the row variable provides lod information");
  AddInput("COLUMN",
           "(LoDTensor) the column variable provides lod information");
  AddInput("W", "W (Tensor), the filter.");
  AddAttr<int>("InputChannel", "the input filter num").SetDefault(1);
  AddAttr<int>("OutputChannel", "the output filter num").SetDefault(1);
  AddAttr<int>("StrideH", "the height of Stride").SetDefault(1);
  AddAttr<int>("StrideW", "the width of Stride").SetDefault(1);
  AddAttr<int>("KernelH", "the height of Kernel").SetDefault(1);
  AddAttr<int>("KernelW", "the width of Kernel").SetDefault(1);

  AddOutput("Out", "(LoDTensor, default LoDTensor<float>) Output variable");
  AddOutput("Col",
            "(LoDTensor, default LoDTensor<float>) the intermediate result "
            "variable");

  AddComment(R"DOC(
    Var Size Conv Operator

    This operator calculate Out = \sigma \left ( W * X + b \right ), 
    only support 2-D for X.
    
    NOTE: only support 'float32' data type now.

  )DOC");
}

void VarConv2dOP::InferShape(framework::InferShapeContext* ctx) const {
63
  PADDLE_ENFORCE_EQ(
64 65
      ctx->HasInput("X"),
      true,
66 67
      platform::errors::NotFound("X(Input) of VarConv2dOP is not found."));
  PADDLE_ENFORCE_EQ(
68 69
      ctx->HasInput("W"),
      true,
70 71
      platform::errors::NotFound("W(Input) of VarConv2dOP is not found."));
  PADDLE_ENFORCE_EQ(
72 73
      ctx->HasInput("ROW"),
      true,
74 75
      platform::errors::NotFound("Input(ROW) of VarConv2dOP is not found."));
  PADDLE_ENFORCE_EQ(
76 77
      ctx->HasInput("COLUMN"),
      true,
78 79
      platform::errors::NotFound("Input(COLUMN) of VarConv2dOP is not found."));
  PADDLE_ENFORCE_EQ(
80 81
      ctx->HasOutput("Out"),
      true,
82 83
      platform::errors::NotFound("Out(Output) of VarConv2dOP is not found."));
  PADDLE_ENFORCE_EQ(
84 85
      ctx->HasOutput("Col"),
      true,
86
      platform::errors::NotFound("Col(Output) of VarConv2dOP is not found."));
K
Kevin 已提交
87 88

  auto x_dims = ctx->GetInputDim("X");
89
  PADDLE_ENFORCE_EQ(
90 91
      x_dims.size(),
      2,
92 93 94
      platform::errors::InvalidArgument(
          "The rank of X(Input) can't be less than 2, but received rank is %u.",
          x_dims.size()));
K
Kevin 已提交
95 96 97

  auto w_dims = ctx->GetInputDim("W");

98
  PADDLE_ENFORCE_EQ(
99 100
      w_dims.size(),
      2,
101 102 103
      platform::errors::InvalidArgument(
          "Input W should be a 2-D tensor, but its actual dimension is %u.",
          w_dims.size()));
K
Kevin 已提交
104 105 106 107
  int output_channel = ctx->Attrs().Get<int>("OutputChannel");
  int input_channel = ctx->Attrs().Get<int>("InputChannel");
  int kernel_h = ctx->Attrs().Get<int>("KernelH");
  int kernel_w = ctx->Attrs().Get<int>("KernelW");
108
  PADDLE_ENFORCE_EQ(
109 110
      w_dims[0],
      output_channel,
111 112 113
      platform::errors::InvalidArgument(
          "Input W's dimension[0] should be equal to OutputChannel, the "
          "dimension[0] is %d, OutputChannel is %d.",
114 115
          w_dims[0],
          output_channel));
K
Kevin 已提交
116
  PADDLE_ENFORCE_EQ(
117 118
      w_dims[1],
      input_channel * kernel_h * kernel_w,
119 120 121
      platform::errors::InvalidArgument(
          "Input W's dimension[1] should be equal to InputChannel * StrideH * "
          "StrideW, the dimension[1] is %d, expected value is %d.",
122 123
          w_dims[1],
          input_channel * kernel_h * kernel_w));
K
Kevin 已提交
124 125 126

  if (ctx->IsRuntime()) {
    framework::Variable* x_var =
127
        BOOST_GET(framework::Variable*, ctx->GetInputVarPtrs("X")[0]);
K
Kevin 已提交
128
    const auto& x_lod = x_var->Get<LoDTensor>().lod();
129
    PADDLE_ENFORCE_EQ(
130 131
        !x_lod.empty(),
        true,
132 133
        platform::errors::InvalidArgument("The Input(X) Tensor of VarConv2dOP "
                                          "does not contain LoD information."));
K
Kevin 已提交
134

135 136
    PADDLE_ENFORCE_GE(x_lod.size(),
                      1,
137 138
                      platform::errors::InvalidArgument(
                          "The Input(X)'s lod info is corrupted."));
139 140
    PADDLE_ENFORCE_EQ(x_dims[0],
                      static_cast<int64_t>(x_lod[0].back()),
141 142 143
                      platform::errors::InvalidArgument(
                          "The Input(X)'s lod info mismatches the actual "
                          "tensor shape, input lod is %s, tensor shape is %s.",
144 145
                          x_lod,
                          x_dims));
K
Kevin 已提交
146 147

    framework::Variable* row_var =
148
        BOOST_GET(framework::Variable*, ctx->GetInputVarPtrs("ROW")[0]);
K
Kevin 已提交
149
    const auto& row_lod = row_var->Get<LoDTensor>().lod();
150 151
    PADDLE_ENFORCE_EQ(!row_lod.empty(),
                      true,
152 153 154
                      platform::errors::InvalidArgument(
                          "The Input(ROW) Tensor of VarConv2dOP does not "
                          "contain LoD information."));
K
Kevin 已提交
155 156

    framework::Variable* col_var =
157
        BOOST_GET(framework::Variable*, ctx->GetInputVarPtrs("COLUMN")[0]);
K
Kevin 已提交
158
    const auto& col_lod = col_var->Get<LoDTensor>().lod();
159 160
    PADDLE_ENFORCE_EQ(!col_lod.empty(),
                      true,
161 162 163
                      platform::errors::InvalidArgument(
                          "The Input(COLUMN) Tensor of VarConv2dOP does not "
                          "contain LoD information."));
K
Kevin 已提交
164 165 166 167 168
  } else {
    std::vector<int64_t> out_dims_vec{-1};
    out_dims_vec.push_back(1);
    std::vector<int64_t> col_dims_vec{-1};
    col_dims_vec.push_back(1);
169 170
    ctx->SetOutputDim("Out", phi::make_ddim(out_dims_vec));
    ctx->SetOutputDim("Col", phi::make_ddim(col_dims_vec));
K
Kevin 已提交
171 172 173 174 175 176
  }
}

template <typename DeviceContext, typename T>
class CPUVarConv2dOPKernel : public framework::OpKernel<T> {
 public:
177 178
  void Im2Col(const framework::ExecutionContext& ctx,
              const LoDTensor& input,
K
Kevin 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
              LoDTensor* col) const {
    int input_channel = ctx.Attr<int>("InputChannel");
    auto* in_row = ctx.Input<LoDTensor>("ROW");
    auto* in_col = ctx.Input<LoDTensor>("COLUMN");
    int kernel_h = ctx.Attr<int>("KernelH");
    int kernel_w = ctx.Attr<int>("KernelW");
    int stride_h = ctx.Attr<int>("StrideH");
    int stride_w = ctx.Attr<int>("StrideW");

    int batch = input.lod()[0].size() - 1;
    const auto& bottom_offset = input.lod()[0];
    // 2-D lod info.
    const auto& offset_x = in_col->lod()[0];
    const auto& offset_y = in_row->lod()[0];

    // top offset is the whole size of each data sample
    std::vector<size_t> top_offset;
    int top_size = 0;
    top_offset.push_back(top_size);
    for (int b = 0; b < batch; ++b) {
      int width = offset_x[b + 1] - offset_x[b];
      int height = offset_y[b + 1] - offset_y[b];
      int top_im_x = 0;
      if (width == 0) {
        top_im_x = 0;
      } else {
        top_im_x = (width - 1) / stride_w + 1;
      }
      int top_im_y = 0;
      if (height == 0) {
        top_im_y = 0;
      } else {
        top_im_y = (height - 1) / stride_h + 1;
      }
      int top_x = top_im_y * top_im_x;
      int top_y = input_channel * kernel_h * kernel_w;
      top_size += top_y * top_x;
      top_offset.push_back(top_size);
    }
    framework::LoD col_lod;
    col_lod.push_back(top_offset);
    col->set_lod(col_lod);
    std::vector<int64_t> col_dims_vec{top_size};
    col_dims_vec.push_back(1);
223
    auto* top_data =
224
        col->mutable_data<T>(phi::make_ddim(col_dims_vec), ctx.GetPlace());
K
Kevin 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
    auto* bottom_data = input.data<T>();

    int kernel_win_size = kernel_h * kernel_w;
    int half_kernel_h = kernel_h / 2;
    int half_kernel_w = kernel_w / 2;
    for (int b = 0; b < batch; ++b) {
      int t_offset = top_offset[b];
      int b_offset = bottom_offset[b];
      int width = offset_x[b + 1] - offset_x[b];
      int height = offset_y[b + 1] - offset_y[b];
      if (width == 0 || height == 0) {
        continue;
      }
      int top_im_x = (width - 1) / stride_w + 1;
      int top_im_y = (height - 1) / stride_h + 1;
      int top_x = top_im_y * top_im_x;
      for (int z = 0; z < input_channel; ++z) {
        int row_offset = kernel_win_size * z;
        int im_offset = z * width * height;
        for (int y = 0; y < height; y += stride_h) {
          for (int x = 0; x < width; x += stride_w) {
            int col_offset = x / stride_w + y / stride_h * top_im_x;
            for (int ky = 0; ky < kernel_h; ++ky) {
              for (int kx = 0; kx < kernel_w; ++kx) {
                int im_y = y + ky - half_kernel_h;
                int im_x = x + kx - half_kernel_w;
                if (im_x >= 0 && im_x < width && im_y >= 0 && im_y < height) {
                  top_data[t_offset +
                           (row_offset + ky * kernel_w + kx) * top_x +
                           col_offset] =
                      bottom_data[b_offset + im_offset + im_y * width + im_x];
                } else {
                  top_data[t_offset +
                           (row_offset + ky * kernel_w + kx) * top_x +
                           col_offset] = 0;
                }
              }
            }
          }
        }
      }
    }
  }

  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* bottom = ctx.Input<LoDTensor>("X");
    auto* in_row = ctx.Input<LoDTensor>("ROW");
    auto* in_col = ctx.Input<LoDTensor>("COLUMN");
    auto* w = ctx.Input<Tensor>("W");
    auto* top = ctx.Output<LoDTensor>("Out");
    auto* col = ctx.Output<LoDTensor>("Col");

    int output_channel = ctx.Attr<int>("OutputChannel");
    int input_channel = ctx.Attr<int>("InputChannel");
    int kernel_h = ctx.Attr<int>("KernelH");
    int kernel_w = ctx.Attr<int>("KernelW");
    int stride_h = ctx.Attr<int>("StrideH");
    int stride_w = ctx.Attr<int>("StrideW");

    Im2Col(ctx, *bottom, col);
    int batch = bottom->lod()[0].size() - 1;
    const auto& col_offset = col->lod()[0];
    const auto& offset_x = in_col->lod()[0];
    const auto& offset_y = in_row->lod()[0];
    std::vector<size_t> top_offset;
    int top_size = 0;
    top_offset.push_back(top_size);
    for (int b = 0; b < batch; ++b) {
      int width = offset_x[b + 1] - offset_x[b];
      int height = offset_y[b + 1] - offset_y[b];
      int top_im_x = 0;
      if (width == 0) {
        top_im_x = 0;
      } else {
        top_im_x = (width - 1) / stride_w + 1;
      }
      int top_im_y = 0;
      if (height == 0) {
        top_im_y = 0;
      } else {
        top_im_y = (height - 1) / stride_h + 1;
      }
      int top_im_size = top_im_y * top_im_x;
      top_size += output_channel * top_im_size;
      top_offset.push_back(top_size);
    }

    framework::LoD top_lod;
    top_lod.push_back(top_offset);

    top->set_lod(top_lod);
    std::vector<int64_t> top_dims_vec{top_size};
    top_dims_vec.push_back(1);
318
    auto* top_data =
319
        top->mutable_data<T>(phi::make_ddim(top_dims_vec), ctx.GetPlace());
K
Kevin 已提交
320 321 322 323

    auto* w_data = w->data<T>();
    auto* col_data = col->data<T>();

L
Leo Chen 已提交
324
    auto blas = phi::funcs::GetBlas<phi::CPUContext, T>(ctx);
K
Kevin 已提交
325 326 327 328 329 330
    for (int b = 0; b < batch; ++b) {
      int top_im_size = (top_offset[b + 1] - top_offset[b]) / output_channel;
      if (top_im_size == 0) {
        continue;
      }

331 332 333 334 335 336 337 338 339 340
      blas.GEMM(CblasNoTrans,
                CblasNoTrans,
                output_channel,
                top_im_size,
                input_channel * kernel_h * kernel_w,
                1.0,
                w_data,
                col_data + col_offset[b],
                0.0,
                top_data + top_offset[b]);
K
Kevin 已提交
341 342 343 344
    }
  }
};

345 346 347 348 349
template <typename T>
class VarConv2dGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

350
  void Apply(GradOpPtr<T> op) const override {
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("W", this->Input("W"));
    op->SetInput("ROW", this->Input("ROW"));
    op->SetInput("COLUMN", this->Input("COLUMN"));
    op->SetInput("Col", this->Output("Col"));
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));

    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("W"), this->InputGrad("W"));
    op->SetAttrMap(this->Attrs());
  }
};

K
Kevin 已提交
366
void VarConv2dOpGrad::InferShape(framework::InferShapeContext* ctx) const {
367 368
  PADDLE_ENFORCE_EQ(ctx->HasInput("X"),
                    true,
369 370
                    platform::errors::NotFound(
                        "Input(X) of SequencePadGradOp is not found."));
371 372
  PADDLE_ENFORCE_EQ(ctx->HasInput("W"),
                    true,
373 374
                    platform::errors::NotFound(
                        "Input(W) of SequencePadGradOp is not found."));
375 376
  PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")),
                    true,
377 378
                    platform::errors::NotFound(
                        "Input(Out@GRAD) of SequencePadGradOp is not found."));
K
Kevin 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481

  if (ctx->HasOutput(framework::GradVarName("X"))) {
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
  }
  if (ctx->HasOutput(framework::GradVarName("W"))) {
    ctx->SetOutputDim(framework::GradVarName("W"), ctx->GetInputDim("W"));
  }
}

template <typename DeviceContext, typename T>
class CPUVarConv2dOPGradKernel : public framework::OpKernel<T> {
 public:
  void Im2ColGrad(const framework::ExecutionContext& ctx, T* top_diff) const {
    auto* x = ctx.Input<LoDTensor>("X");
    auto* in_row = ctx.Input<LoDTensor>("ROW");
    auto* in_col = ctx.Input<LoDTensor>("COLUMN");
    auto* col = ctx.Input<LoDTensor>("Col");

    int input_channel = ctx.Attr<int>("InputChannel");
    int kernel_h = ctx.Attr<int>("KernelH");
    int kernel_w = ctx.Attr<int>("KernelW");
    int stride_h = ctx.Attr<int>("StrideH");
    int stride_w = ctx.Attr<int>("StrideW");

    auto* dx = ctx.Output<LoDTensor>(framework::GradVarName("X"));

    auto* dx_data = dx->mutable_data<T>(ctx.GetPlace());
    memset(dx_data, 0.0, x->dims()[0] * x->dims()[1] * sizeof(T));

    const auto& bottom_offset = x->lod()[0];
    const auto& offset_x = in_col->lod()[0];
    const auto& offset_y = in_row->lod()[0];
    const auto& top_offset = col->lod()[0];
    int batch = x->lod()[0].size() - 1;
    int kernel_win_size = kernel_h * kernel_w;
    int half_kernel_h = kernel_h / 2;
    int half_kernel_w = kernel_w / 2;
    for (int b = 0; b < batch; ++b) {
      int t_offset = top_offset[b];
      int b_offset = bottom_offset[b];
      int width = offset_x[b + 1] - offset_x[b];
      int height = offset_y[b + 1] - offset_y[b];
      if (width == 0 || height == 0) {
        continue;
      }
      int top_im_x = (width - 1) / stride_w + 1;
      int top_im_y = (height - 1) / stride_h + 1;
      int top_x = top_im_y * top_im_x;
      for (int z = 0; z < input_channel; ++z) {
        int row_offset = kernel_win_size * z;
        int im_offset = z * width * height;
        for (int y = 0; y < height; y += stride_h) {
          for (int x = 0; x < width; x += stride_w) {
            int col_offset = x / stride_w + y / stride_h * top_im_x;
            for (int ky = 0; ky < kernel_h; ++ky) {
              for (int kx = 0; kx < kernel_w; ++kx) {
                int im_y = y + ky - half_kernel_h;
                int im_x = x + kx - half_kernel_w;
                if (im_x >= 0 && im_x < width && im_y >= 0 && im_y < height) {
                  dx_data[b_offset + im_offset + im_y * width + im_x] +=
                      top_diff[t_offset +
                               (row_offset + ky * kernel_w + kx) * top_x +
                               col_offset];
                }
              }
            }
          }
        }
      }
    }
  }

  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<LoDTensor>("X");
    auto* w = ctx.Input<Tensor>("W");
    auto* col = ctx.Input<LoDTensor>("Col");
    auto* out = ctx.Input<LoDTensor>("Out");

    int output_channel = ctx.Attr<int>("OutputChannel");
    int input_channel = ctx.Attr<int>("InputChannel");
    int kernel_h = ctx.Attr<int>("KernelH");
    int kernel_w = ctx.Attr<int>("KernelW");

    auto* d_out = ctx.Input<LoDTensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<LoDTensor>(framework::GradVarName("X"));
    auto* d_w = ctx.Output<Tensor>(framework::GradVarName("W"));

    Tensor col_grad;
    col_grad.Resize(col->dims());
    auto* col_diff = col_grad.mutable_data<T>(ctx.GetPlace());
    auto* dx_data = dx->mutable_data<T>(ctx.GetPlace());
    auto* w_diff = d_w->mutable_data<T>(ctx.GetPlace());

    memset(dx_data, 0.0, x->dims()[0] * x->dims()[1] * sizeof(T));
    memset(w_diff, 0.0, w->dims()[0] * w->dims()[1] * sizeof(T));
    memset(col_diff, 0.0, col->dims()[0] * col->dims()[1] * sizeof(T));
    auto* top_diff = d_out->data<T>();
    auto* w_data = w->data<T>();
    auto* col_data = col->data<T>();
    int batch = x->lod()[0].size() - 1;
    const auto& top_offset = out->lod()[0];
    const auto& col_offset = col->lod()[0];
L
Leo Chen 已提交
482
    auto blas = phi::funcs::GetBlas<phi::CPUContext, T>(ctx);
K
Kevin 已提交
483 484 485 486 487 488
    for (int b = 0; b < batch; ++b) {
      int top_im_size = (top_offset[b + 1] - top_offset[b]) / output_channel;
      if (top_im_size == 0) {
        continue;
      }

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
      blas.GEMM(CblasTrans,
                CblasNoTrans,
                input_channel * kernel_h * kernel_w,
                top_im_size,
                output_channel,
                1.0,
                w_data,
                top_diff + top_offset[b],
                1.0,
                col_diff + col_offset[b]);

      blas.GEMM(CblasNoTrans,
                CblasTrans,
                output_channel,
                input_channel * kernel_h * kernel_w,
                top_im_size,
                1.0,
                top_diff + top_offset[b],
                col_data + col_offset[b],
                1.0,
K
Kevin 已提交
509 510 511 512 513 514 515 516 517 518 519 520
                w_diff);
    }
    Im2ColGrad(ctx, col_diff);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plt = paddle::platform;
namespace frm = paddle::framework;
521 522 523
REGISTER_OPERATOR(var_conv_2d,
                  ops::VarConv2dOP,
                  ops::VarConv2dOpMaker,
524 525
                  ops::VarConv2dGradMaker<paddle::framework::OpDesc>,
                  ops::VarConv2dGradMaker<paddle::imperative::OpBase>);
K
Kevin 已提交
526 527 528
REGISTER_OPERATOR(var_conv_2d_grad, ops::VarConv2dOpGrad);

REGISTER_OP_CPU_KERNEL(var_conv_2d,
L
Leo Chen 已提交
529 530
                       ops::CPUVarConv2dOPKernel<phi::CPUContext, float>);
//     ops::CPUVarConv2dOPKernel<phi::CPUContext,
K
Kevin 已提交
531
//                                       double>
L
Leo Chen 已提交
532 533 534
REGISTER_OP_CPU_KERNEL(var_conv_2d_grad,
                       ops::CPUVarConv2dOPGradKernel<phi::CPUContext, float>);
//     ops::CPUVarConv2dOPGradKernel<phi::CPUContext,
K
Kevin 已提交
535
//                                           double>