matmul_kernel.cc 21.2 KB
Newer Older
1
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include <string>

17 18
#include "paddle/phi/kernels/matmul_kernel.h"

19
#include "paddle/phi/backends/onednn/matmul_utils.h"
20 21
#include "paddle/phi/core/kernel_registry.h"

22 23 24 25 26
using dnnl::engine;
using dnnl::inner_product_forward;
using dnnl::memory;
using dnnl::prop_kind;
using dnnl::stream;
27
using phi::ReshapeToMatrix;
28

29 30
namespace phi {

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
KernelKey MatmulGetkernelTypeForVar(const GetKernelTypeForVarContext *ctx) {
  const DenseTensor &tensor = ctx->GetTensor();
  const KernelKey &expected_kernel_type = ctx->GetKernelKey();
  if (phi::IsComplexType(expected_kernel_type.dtype())) {
    // only promote inputs’s types when contains complex input
    return phi::KernelKey(tensor.place(), tensor.layout(), tensor.dtype());
  } else {
#ifdef PADDLE_WITH_MKLDNN
    // When matmul_v2 is first oneDNN op in a chain (there was some non oneDNN
    // op previously) then we also need to rotate shape NHWC -> NCWH
    if ((expected_kernel_type.layout() == phi::DataLayout::ONEDNN) &&
        (tensor.layout() != phi::DataLayout::ONEDNN) &&
        phi::OneDNNContext::tls().get_cur_paddle_data_layout() ==
            phi::DataLayout::kNHWC) {
      return phi::KernelKey(
          tensor.place(), phi::DataLayout::kNHWC, expected_kernel_type.dtype());
    }
#endif
    return phi::KernelKey(
        tensor.place(), tensor.layout(), expected_kernel_type.dtype());
  }
}

54 55 56 57
void CalculateMatrixDims(const std::vector<int64_t> &x_dims,
                         const std::vector<int64_t> &y_dims,
                         std::vector<int64_t> *x_bd_dims,
                         std::vector<int64_t> *y_bd_dims,
58
                         DenseTensor *out) {
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
  if (x_dims.size() == 1) {
    (*x_bd_dims)[(*x_bd_dims).size() - 1] = x_dims[0];
  } else if (x_dims.size() == 2) {
    (*x_bd_dims)[(*x_bd_dims).size() - 1] = x_dims[1];
    (*x_bd_dims)[(*x_bd_dims).size() - 2] = x_dims[0];
  } else {
    for (size_t i = 0; i < x_dims.size(); ++i) {
      (*x_bd_dims)[(*x_bd_dims).size() - x_dims.size() + i] = x_dims[i];
    }
  }
  if (y_dims.size() == 1) {
    (*y_bd_dims)[(*x_bd_dims).size() - 2] = y_dims[0];
  } else if (y_dims.size() == 2) {
    (*y_bd_dims)[(*y_bd_dims).size() - 1] = y_dims[1];
    (*y_bd_dims)[(*y_bd_dims).size() - 2] = y_dims[0];
  } else {
    for (size_t i = 0; i < y_dims.size(); ++i) {
      (*y_bd_dims)[(*y_bd_dims).size() - y_dims.size() + i] = y_dims[i];
    }
  }

80
  if (x_dims.size() > 2 && y_dims.size() > 2) {
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    auto out_dims = vectorize(out->dims());
    for (size_t i = 0; i < (*x_bd_dims).size() - 2; ++i) {
      PADDLE_ENFORCE_EQ(
          (*x_bd_dims)[i] == (*y_bd_dims)[i] || (*x_bd_dims)[i] == 1 ||
              (*y_bd_dims)[i] == 1,
          true,
          errors::InvalidArgument(
              "Tensor dimensions are incorrect for broadcasting."
              "Dimensions in X and Y must be same or equal to 1, but "
              "received x_dim[%d]=%d and y_dims[%d]= %d",
              i,
              (*x_bd_dims)[i],
              i,
              (*y_bd_dims)[i]));
      (out_dims)[i] = std::max((*x_bd_dims)[i], (*y_bd_dims)[i]);
    }
    out->Resize(make_ddim((out_dims)));
  }
}

template <typename T, typename Context>
void MatmulKernel(const Context &dev_ctx,
                  const DenseTensor &x,
                  const DenseTensor &y,
                  bool transpose_x,
                  bool transpose_y,
                  DenseTensor *out) {
  if (dev_ctx.HasDnnAttr("head_number")) {
    const auto head_number =
        PADDLE_GET_CONST(int, dev_ctx.GetDnnAttr("head_number"));
    PADDLE_ENFORCE_EQ(
        head_number,
        1,
        errors::Unimplemented(
            "oneDNN matmul doesn't support multiple heads. Expected "
            "head_number=1. But received `head_number` is %d",
            head_number));
  }

  constexpr bool is_int8 = funcs::is_int8<T>();
  constexpr bool is_bfloat16 = funcs::is_bfloat16<T>();
  const bool force_fp32_output =
      dev_ctx.HasDnnAttr("force_fp32_output")
          ? PADDLE_GET_CONST(bool, dev_ctx.GetDnnAttr("force_fp32_output"))
          : false;

127 128
  auto x_dims = vectorize(x.dims());
  auto y_dims = vectorize(y.dims());
129 130 131 132 133 134
  int ndims = std::max(x_dims.size(), y_dims.size());
  ndims = std::max(ndims, 3);

  std::vector<int64_t> x_bd_dims(ndims, 1);
  std::vector<int64_t> y_bd_dims(ndims, 1);

135
  CalculateMatrixDims(x_dims, y_dims, &x_bd_dims, &y_bd_dims, out);
136 137 138 139 140

  if (force_fp32_output || ((!is_int8) && (!is_bfloat16))) {
    funcs::ExecuteMatmul<T, float>(
        dev_ctx, x, y, x_bd_dims, y_bd_dims, transpose_x, transpose_y, out);
  } else if (is_bfloat16) {
141
    funcs::ExecuteMatmul<T, phi::dtype::bfloat16>(
142 143 144 145 146 147 148
        dev_ctx, x, y, x_bd_dims, y_bd_dims, transpose_x, transpose_y, out);
  } else {
    funcs::ExecuteMatmul<T, int8_t>(
        dev_ctx, x, y, x_bd_dims, y_bd_dims, transpose_x, transpose_y, out);
  }
}

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
template <typename XT, typename YT, typename OT>
class MulPrimitiveFactory {
 public:
  explicit MulPrimitiveFactory(const engine &engine) : engine_(engine) {}

  inner_product_forward CreateMulPrimitive(const DenseTensor *x_input,
                                           const DenseTensor *y_input,
                                           DenseTensor *output,
                                           int x_num_col_dims,
                                           int y_num_col_dims,
                                           const OneDNNContext &dev_ctx) {
    // TODO(intel-minghui) : Remove the restriction that only supports Input(Y)
    // as weights
    PADDLE_ENFORCE_EQ(
        (std::is_same<YT, float>::value),
        true,
        errors::InvalidArgument(
            "Input(Y) must be fp32 data type since only fp32 data type is "
            "supported in the current design of OneDNN INT8."));

    /* check data format and reorder if need */
    auto x_matrix = UpdateDataFormat<XT>(x_input, x_num_col_dims, dev_ctx);
    auto y_matrix = UpdateDataFormat<YT>(y_input, y_num_col_dims, dev_ctx);

    auto output_dim = output->dims();
    if (output_dim.size() != 2) {
      output->Resize({x_matrix.dims()[0], y_matrix.dims()[1]});
    }

    if (mul_) {
      UpdateDataPointers(dev_ctx, output, &x_matrix);
      Execute();
      return *(mul_);
    }

    auto src_desc =
        CreateMemDescriptor<XT>(&x_matrix, funcs::OneDNNMemoryFormat::nc);
    x_input_ = CreateMemory<XT>(src_desc, &x_matrix);

    if (is_int8_) {
      const auto trans_y = TransposeInputY(&y_matrix);
      auto scale_y = dev_ctx.HasDnnAttr("scale_y")
                         ? PADDLE_GET_CONST(std::vector<float>,
                                            dev_ctx.GetDnnAttr("scale_y"))
                         : std::vector<float>();
      y_input_ = QuantInputY(trans_y, scale_y);
    } else {
      y_input_ = TransposeInputY(&y_matrix);
    }

    auto dst_desc =
        CreateMemDescriptor<OT>(output, funcs::OneDNNMemoryFormat::any);

    mul_ = CreateMulPrimitive(*x_input_, *y_input_, dst_desc, output, dev_ctx);
    Execute();
    return *(mul_);
  }

 private:
  memory ReorderWithScale(const memory::desc &src_desc,
                          const memory::desc &dst_desc,
                          void *src_data,
                          const std::vector<float> &scale) {
    auto mask = scale.size() > 1 ? 1 : 0;
    dnnl::primitive_attr attr;
214
    attr.set_scales_mask(DNNL_ARG_SRC, mask);
215 216 217

    auto src_mem = memory(src_desc, engine_, src_data);
    auto dst_mem = memory(dst_desc, engine_);
218 219 220 221
    auto scales_md = dnnl::memory::desc(
        {1}, dnnl::memory::data_type::f32, dnnl::memory::format_tag::x);
    auto scales_mem = dnnl::memory(
        scales_md, engine_, funcs::to_void_cast<float>(scale.data()));
222 223 224 225 226 227 228

    auto reorder_pd = dnnl::reorder::primitive_desc(src_mem, dst_mem, attr);

    auto reorder = dnnl::reorder(reorder_pd);

    auto &astream = OneDNNContext::tls().get_stream();
    {
229 230 231 232 233
      std::unordered_map<int, dnnl::memory> reorder_args;
      reorder_args.insert({DNNL_ARG_SRC, src_mem});
      reorder_args.insert({DNNL_ARG_DST, dst_mem});
      reorder_args.insert({DNNL_ARG_ATTR_SCALES | DNNL_ARG_SRC, scales_mem});
      reorder.execute(astream, reorder_args);
234 235 236 237 238 239 240
      astream.wait();
    }

    return dst_mem;
  }

  memory QuantInputY(memory input_y, const std::vector<float> &scale_y) {
241
    auto y_dims = input_y.get_desc().get_dims();
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

    auto user_y_desc =
        CreateMemDescriptor<YT>(y_dims, funcs::OneDNNMemoryFormat::oi);
    auto y_desc =
        CreateMemDescriptor<int8_t>(y_dims, funcs::OneDNNMemoryFormat::oi);

    return ReorderWithScale(
        user_y_desc, y_desc, input_y.get_data_handle(), scale_y);
  }

  dnnl::primitive_attr CreateMulAttr(const OneDNNContext &dev_ctx,
                                     bool force_fp32_output) {
    dnnl::primitive_attr mul_attr;

    auto scale_y_data = dev_ctx.HasDnnAttr("scale_y")
                            ? PADDLE_GET_CONST(std::vector<float>,
                                               dev_ctx.GetDnnAttr("scale_y"))
                            : std::vector<float>{1.0};
    auto scale_x_data =
        dev_ctx.HasDnnAttr("scale_x")
            ? PADDLE_GET_CONST(float, dev_ctx.GetDnnAttr("scale_x"))
            : 1.0f;
    auto scale_out =
        dev_ctx.HasDnnAttr("scale_out")
            ? PADDLE_GET_CONST(float, dev_ctx.GetDnnAttr("scale_out"))
            : 1.0f;
    auto scale_out_data = force_fp32_output ? 1.0f : scale_out;

    bool is_multi_channel = scale_y_data.size() > 1;
    int count = is_multi_channel ? scale_y_data.size() : 1;
    std::vector<float> output_shift_scale(count);
    for (int i = 0; i < count; i++) {
      if (scale_y_data[i] == 0.0)
        output_shift_scale[i] = scale_out_data;
      else
        output_shift_scale[i] =
            scale_out_data / (scale_x_data * scale_y_data[i]);
    }
    int mul_mask = is_multi_channel ? 1 : 0;
281 282 283 284 285 286 287
    mul_attr.set_scales_mask(DNNL_ARG_WEIGHTS, mul_mask);

    auto scales_md = dnnl::memory::desc(
        {count}, dnnl::memory::data_type::f32, dnnl::memory::format_tag::x);
    scales_mem_ = dnnl::memory(scales_md, engine_);
    auto mem_buf = scales_mem_.get_data_handle();
    memcpy(mem_buf, output_shift_scale.data(), count * sizeof(float));
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306

    return mul_attr;
  }

  inner_product_forward CreateMulPrimitive(const memory &x_memory,
                                           const memory &y_memory,
                                           const memory::desc &dst_desc,
                                           DenseTensor *output,
                                           const OneDNNContext &dev_ctx) {
    const auto x_desc = x_memory.get_desc();
    const auto y_desc = y_memory.get_desc();
    inner_product_forward::primitive_desc mul_prim_desc;

    if (is_int8_) {
      bool force_fp32_output =
          dev_ctx.HasDnnAttr("force_fp32_output")
              ? PADDLE_GET_CONST(bool, dev_ctx.GetDnnAttr("force_fp32_output"))
              : false;
      auto mul_attr = CreateMulAttr(dev_ctx, force_fp32_output);
307 308
      mul_prim_desc = inner_product_forward::primitive_desc(
          engine_, prop_kind::forward, x_desc, y_desc, dst_desc, mul_attr);
309
    } else {
310 311
      mul_prim_desc = inner_product_forward::primitive_desc(
          engine_, prop_kind::forward, x_desc, y_desc, dst_desc);
312 313 314 315 316 317 318 319 320
    }

    output_ = CreateDstMemory(mul_prim_desc, dev_ctx, output);

    return inner_product_forward(mul_prim_desc);
  }

  void Execute() {
    auto &astream = OneDNNContext::tls().get_stream();
321

322 323 324
    (*mul_).execute(astream,
                    {{DNNL_ARG_SRC, *x_input_},
                     {DNNL_ARG_WEIGHTS, *y_input_},
325 326
                     {DNNL_ARG_DST, *output_},
                     {DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, scales_mem_}});
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
    astream.wait();
  }

  template <typename T>
  DenseTensor UpdateDataFormat(const DenseTensor *data,
                               int num_col_dims,
                               const OneDNNContext &dev_ctx) {
    DenseTensor x_tmp;
    DenseTensor data_matrix;
    // This code is enforcing plain (non-blocked) memory arrangement
    // in order to flatten (reduce dimensionality) of DenseTensor later
    auto src_mdesc = data->mem_desc();
    auto dst_mdesc = data->dims().size() >= 4
                         ? (data->dims().size() == 5
                                ? CreateMemDescriptor<T>(
                                      data, funcs::OneDNNMemoryFormat::ncdhw)
                                : CreateMemDescriptor<T>(
                                      data, funcs::OneDNNMemoryFormat::nchw))
                         : src_mdesc;

    if (src_mdesc != dst_mdesc) {
      dev_ctx.template Alloc<T>(&x_tmp, data->memory_size());

      Reorder(src_mdesc,
              dst_mdesc,
              funcs::to_void_cast<T>(data->data<T>()),
              funcs::to_void_cast<T>(x_tmp.data<T>()));

      x_tmp.Resize(data->dims());
      x_tmp.set_mem_desc(dst_mdesc);
      data_matrix = ReshapeToMatrix(x_tmp, num_col_dims);
    } else {
      data_matrix = ReshapeToMatrix(*data, num_col_dims);
    }

    return data_matrix;
  }

  void UpdateDataPointers(const OneDNNContext &dev_ctx,
                          DenseTensor *out,
                          const DenseTensor *in) {
    x_input_->set_data_handle(funcs::to_void_cast<XT>(in->data<XT>()));
    output_->set_data_handle(dev_ctx.template Alloc<OT>(out));
    out->set_mem_desc(output_->get_desc());
  }

  template <typename T>
  memory::desc CreateMemDescriptor(
      const DenseTensor *tensor,
      funcs::OneDNNMemoryFormat format,
      memory::data_type type = funcs::OneDNNGetDataType<T>()) {
    auto dims = vectorize<int64_t>(tensor->dims());
    return funcs::OneDNNMemDesc(dims, type, format);
  }

  template <typename T>
  memory::desc CreateMemDescriptor(
      const std::vector<int64_t> &dims,
      funcs::OneDNNMemoryFormat format,
      memory::data_type type = funcs::OneDNNGetDataType<T>()) {
    return funcs::OneDNNMemDesc(dims, type, format);
  }

  template <typename T>
  memory CreateMemory(const memory::desc &desc, const DenseTensor *tensor) {
    return memory(desc, engine_, funcs::to_void_cast<T>(tensor->data<T>()));
  }

  memory CreateDstMemory(
      const inner_product_forward::primitive_desc &mul_prim_desc,
      const OneDNNContext &dev_ctx,
      DenseTensor *output) {
    auto dst_desc = mul_prim_desc.dst_desc();
    auto buffer_size = dst_desc.get_size();

    OT *output_data = dev_ctx.template Alloc<OT>(output, buffer_size);
    output->set_mem_desc(dst_desc);
    return memory(dst_desc, engine_, funcs::to_void_cast<OT>(output_data));
  }

  memory Reorder(const memory::desc &src_desc,
                 const memory::desc &dst_desc,
                 void *src_data,
                 void *dst_data = NULL) {
    auto src_mem = memory(src_desc, engine_, src_data);
    auto dst_mem = dst_data ? memory(dst_desc, engine_, dst_data)
                            : memory(dst_desc, engine_);

    auto reorder = dnnl::reorder(src_mem, dst_mem);

    auto &astream = OneDNNContext::tls().get_stream();
    {
      reorder.execute(astream, src_mem, dst_mem);
      astream.wait();
    }

    return dst_mem;
  }

  memory TransposeInputY(const DenseTensor *input_y) {
    auto dims = vectorize<int64_t>(input_y->dims());
    std::swap(dims[0], dims[1]);  // Correct output dimensions
    auto src_desc =
        CreateMemDescriptor<YT>(dims, funcs::OneDNNMemoryFormat::io);
    auto dst_desc =
        CreateMemDescriptor<YT>(dims, funcs::OneDNNMemoryFormat::oi);
    return Reorder(
        src_desc, dst_desc, funcs::to_void_cast<YT>(input_y->data<YT>()));
  }

  const engine &engine_;
  paddle::optional<memory> x_input_;
  paddle::optional<memory> y_input_;
  paddle::optional<memory> output_;
  paddle::optional<inner_product_forward> mul_;
  static constexpr bool is_int8_ = funcs::is_int8<XT>();
443
  dnnl::memory scales_mem_;
444 445 446 447 448 449 450 451 452 453
};

/* OT: output data type */
template <typename XT, typename YT, typename OT>
std::shared_ptr<MulPrimitiveFactory<XT, YT, OT>> GetPrimitiveFactory(
    const OneDNNContext &dev_ctx,
    const DenseTensor *input_x,
    const DenseTensor *input_y,
    const engine &onednn_engine) {
  std::string key = funcs::CreateKey(dev_ctx,
454
                                     phi::TransToProtoVarType(input_x->dtype()),
455
                                     vectorize(input_x->dims()),
456
                                     phi::TransToProtoVarType(input_y->dtype()),
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
                                     vectorize(input_y->dims()),
                                     dev_ctx.GetOutputsName("Out")[0]);
  key = funcs::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);

  auto prim_creator = std::static_pointer_cast<MulPrimitiveFactory<XT, YT, OT>>(
      dev_ctx.GetBlob(key));

  if (prim_creator == nullptr) {
    prim_creator =
        std::make_shared<MulPrimitiveFactory<XT, YT, OT>>(onednn_engine);
    dev_ctx.SetBlob(key, prim_creator);
  }

  return prim_creator;
}

/* XT: input x data type, YT: input y data type */
template <typename XT, typename YT>
inner_product_forward GetMulPrimitive(const OneDNNContext &dev_ctx,
                                      const DenseTensor *input_x,
                                      const DenseTensor *input_y,
                                      DenseTensor *output,
                                      int x_num_col_dims,
                                      int y_num_col_dims,
                                      const engine &onednn_engine) {
  constexpr bool is_int8 = funcs::is_int8<XT>();
  bool force_fp32_output =
      dev_ctx.HasDnnAttr("force_fp32_output")
          ? PADDLE_GET_CONST(bool, dev_ctx.GetDnnAttr("force_fp32_output"))
          : false;

  if (is_int8 && !force_fp32_output) {
    return GetPrimitiveFactory<XT, YT, int8_t>(
               dev_ctx, input_x, input_y, onednn_engine)
        ->CreateMulPrimitive(
            input_x, input_y, output, x_num_col_dims, y_num_col_dims, dev_ctx);

  } else {
    return GetPrimitiveFactory<XT, YT, float>(
               dev_ctx, input_x, input_y, onednn_engine)
        ->CreateMulPrimitive(
            input_x, input_y, output, x_num_col_dims, y_num_col_dims, dev_ctx);
  }
}

/* XT: input x data type */
template <typename XT, typename Context>
void MatmulWithFlattenKernelINT8(const Context &dev_ctx,
                                 const DenseTensor &x,
                                 const DenseTensor &y,
                                 int x_num_col_dims,
                                 int y_num_col_dims,
                                 DenseTensor *out) {
  PADDLE_ENFORCE_EQ(dev_ctx.GetPlace().GetType() == AllocationType::CPU,
                    true,
                    errors::PreconditionNotMet(
                        "oneDNN MatmulWithFlatten kernel must use CPUPlace"));

  OneDNNContext::tls().log_lib_version();
  auto &onednn_engine = dev_ctx.GetEngine();

  auto out_dims = out->dims();

  auto mul = GetMulPrimitive<XT, float>(
      dev_ctx, &x, &y, out, x_num_col_dims, y_num_col_dims, onednn_engine);

  if (out_dims.size() != 2) {
    out->Resize(out_dims);
  }

527 528 529 530 531 532
  auto in_md = dnnl_primitive_desc_query_md(
      mul.get_primitive_desc(), dnnl_query_dst_md, 0);
  dnnl_memory_desc_t cloned_in_md = nullptr;
  dnnl_memory_desc_clone(&cloned_in_md, in_md);
  out->set_mem_desc(
      memory::desc(cloned_in_md).reshape(vectorize<int64_t>(out->dims())));
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
}

template <typename T, typename Context>
void MatmulWithFlattenKernel(const Context &dev_ctx,
                             const DenseTensor &x,
                             const DenseTensor &y,
                             int x_num_col_dims,
                             int y_num_col_dims,
                             DenseTensor *out) {
  constexpr bool is_int8 = funcs::is_int8<T>();
  if (is_int8) {
    MatmulWithFlattenKernelINT8<T, Context>(
        dev_ctx, x, y, x_num_col_dims, y_num_col_dims, out);
    return;
  }

  const DenseTensor x_matrix =
      x.dims().size() > 2 ? ReshapeToMatrix(x, x_num_col_dims) : x;
  const DenseTensor y_matrix =
      y.dims().size() > 2 ? ReshapeToMatrix(y, y_num_col_dims) : y;

  // adding mb dim because MatMulV2 handler needs it
  std::vector<int64_t> x_dims(3, 1);
  std::vector<int64_t> y_dims(3, 1);

  x_dims[1] = x_matrix.dims()[0];
  x_dims[2] = x_matrix.dims()[1];
  y_dims[1] = y_matrix.dims()[0];
  y_dims[2] = y_matrix.dims()[1];

  funcs::ExecuteMul<T>(
      dev_ctx, x_matrix, y_matrix, x_dims, y_dims, false, false, out);
}

567 568 569 570 571 572 573 574 575
}  // namespace phi

PD_REGISTER_KERNEL(matmul,
                   OneDNN,
                   ONEDNN,
                   phi::MatmulKernel,
                   float,
                   phi::dtype::bfloat16,
                   int8_t,
576 577 578
                   uint8_t) {
  kernel->get_kerneltype_forvar_fn_ = phi::MatmulGetkernelTypeForVar;
}
579 580 581 582 583 584 585 586 587

PD_REGISTER_KERNEL(matmul_with_flatten,
                   OneDNN,
                   ONEDNN,
                   phi::MatmulWithFlattenKernel,
                   float,
                   phi::dtype::bfloat16,
                   uint8_t,
                   int8_t) {}