math_function.h 4.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
T
tensor-tang 已提交
16
#ifdef PADDLE_WITH_MKLML
Q
qijun 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
#include <mkl_cblas.h>
#include <mkl_lapacke.h>
#include <mkl_vml_functions.h>
#endif

#ifdef PADDLE_USE_OPENBLAS
#include <cblas.h>
#include <lapacke.h>
#endif

#ifndef LAPACK_FOUND
extern "C" {
#include <cblas.h>
int LAPACKE_sgetrf(int matrix_layout, int m, int n, float* a, int lda,
                   int* ipiv);
int LAPACKE_dgetrf(int matrix_layout, int m, int n, double* a, int lda,
                   int* ipiv);
int LAPACKE_sgetri(int matrix_layout, int n, float* a, int lda,
                   const int* ipiv);
int LAPACKE_dgetri(int matrix_layout, int n, double* a, int lda,
                   const int* ipiv);
}
#endif

#include <cmath>
Q
qijun 已提交
42

Y
Yi Wang 已提交
43 44 45 46 47
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
Q
qijun 已提交
48 49 50 51 52

namespace paddle {
namespace operators {
namespace math {

Q
qijun 已提交
53 54
// Support continuous memory now
// If transA = N, and transB = N
M
Markus Kliegl 已提交
55
// Then matrixA: M * K, matrixB: K * N, matrixC : M * N
Q
qijun 已提交
56 57
// For more detailed info, please refer to
// http://www.netlib.org/lapack/explore-html/d4/de2/sgemm_8f.html
Q
QI JUN 已提交
58 59
template <typename DeviceContext, typename T>
void gemm(const DeviceContext& context, const CBLAS_TRANSPOSE transA,
60 61
          const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
          const T alpha, const T* A, const T* B, const T beta, T* C);
Q
qijun 已提交
62

G
guosheng 已提交
63
// gemm wrapper with stride args for matrix uncontinuous in memory
Q
QI JUN 已提交
64 65 66 67 68
template <typename DeviceContext, typename T>
void gemm(const DeviceContext& context, const bool transA, const bool transB,
          const int M, const int N, const int K, const T alpha, const T* A,
          const int lda, const T* B, const int ldb, const T beta, T* C,
          const int ldc);
G
guosheng 已提交
69

Q
qijun 已提交
70
// matrix multiply with continuous memory
Q
QI JUN 已提交
71 72 73 74
template <typename DeviceContext, typename T>
void matmul(const DeviceContext& context, const framework::Tensor& matrix_a,
            bool trans_a, const framework::Tensor& matrix_b, bool trans_b,
            T alpha, framework::Tensor* matrix_out, T beta);
Q
qijun 已提交
75

M
Markus Kliegl 已提交
76
// Batched gemm
Q
QI JUN 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
template <typename DeviceContext, typename T>
void batched_gemm(const DeviceContext& context, const CBLAS_TRANSPOSE transA,
                  const CBLAS_TRANSPOSE transB, const int M, const int N,
                  const int K, const T alpha, const T* A, const T* B,
                  const T beta, T* C, const int batchCount, const int strideA,
                  const int strideB);

template <typename DeviceContext, typename T>
void gemv(const DeviceContext& context, const bool trans_a, const int M,
          const int N, const T alpha, const T* A, const T* B, const T beta,
          T* C);

template <typename DeviceContext, typename T>
void axpy(const DeviceContext& context, const int n, const T alpha, const T* x,
          T* y);

template <typename DeviceContext, typename T, int Rank>
94
struct Transpose {
Q
QI JUN 已提交
95 96
  void operator()(const DeviceContext& context, const framework::Tensor& in,
                  framework::Tensor* out, const std::vector<int>& axis);
97 98
};

Q
QI JUN 已提交
99
template <typename DeviceContext, typename T>
Q
qijun 已提交
100
struct SetConstant {
Q
QI JUN 已提交
101 102
  void operator()(const DeviceContext& context, framework::Tensor* tensor,
                  T num);
Q
qijun 已提交
103 104
};

105 106 107 108 109 110 111
template <typename Place>
void set_constant_with_place(const platform::DeviceContext& context,
                             framework::Tensor* tensor, float value);

void set_constant(const platform::DeviceContext& context,
                  framework::Tensor* tensor, float value);

Q
QI JUN 已提交
112
template <typename DeviceContext, typename T>
113
struct RowwiseAdd {
Q
QI JUN 已提交
114 115
  void operator()(const DeviceContext& context, const framework::Tensor& input,
                  const framework::Tensor& vec, framework::Tensor* output);
116 117
};

Q
QI JUN 已提交
118
template <typename DeviceContext, typename T>
119
struct ColwiseSum {
Q
QI JUN 已提交
120 121
  void operator()(const DeviceContext& context, const framework::Tensor& input,
                  framework::Tensor* vec);
122 123
};

C
chengduoZH 已提交
124 125 126 127 128 129 130 131 132 133 134 135
template <typename DeviceContext, typename T>
struct RowwiseSum {
  void operator()(const DeviceContext& context, const framework::Tensor& input,
                  framework::Tensor* vec);
};

template <typename DeviceContext, typename T>
struct RowwiseMean {
  void operator()(const DeviceContext& context, const framework::Tensor& input,
                  framework::Tensor* vec);
};

Q
qijun 已提交
136 137 138
}  // namespace math
}  // namespace operators
}  // namespace paddle