weighted_sample_neighbors_kernel.cc 8.6 KB
Newer Older
S
Siming Dai 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/weighted_sample_neighbors_kernel.h"

#include <cmath>
#include <queue>
#include <vector>

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T>
struct GraphWeightedNode {
  T node_id;
  float weight_key;
  T eid;
  GraphWeightedNode() {
    node_id = 0;
    weight_key = 0;
    eid = 0;
  }
  GraphWeightedNode(T node_id, float weight_key, T eid = 0)
      : node_id(node_id), weight_key(weight_key), eid(eid) {}
38 39 40 41 42 43 44 45 46 47

  GraphWeightedNode& operator=(const GraphWeightedNode<T>& other) {
    if (this != &other) {
      this->node_id = other.node_id;
      this->weight_key = other.weight_key;
      this->eid = other.eid;
      return *this;
    }

    return *this;
S
Siming Dai 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
  }
  friend bool operator>(const GraphWeightedNode<T>& n1,
                        const GraphWeightedNode<T>& n2) {
    return n1.weight_key > n2.weight_key;
  }
};

template <typename T>
void SampleWeightedNeighbors(
    std::vector<T>& out_src,  // NOLINT
    const std::vector<float>& out_weight,
    std::vector<T>& out_eids,  // NOLINT
    int sample_size,
    std::mt19937& rng,                                         // NOLINT
    std::uniform_real_distribution<float>& dice_distribution,  // NOLINT
    bool return_eids) {
  std::priority_queue<phi::GraphWeightedNode<T>,
                      std::vector<phi::GraphWeightedNode<T>>,
                      std::greater<phi::GraphWeightedNode<T>>>
      min_heap;
  for (size_t i = 0; i < out_src.size(); i++) {
    float weight_key = log2(dice_distribution(rng)) * (1 / out_weight[i]);
    if (static_cast<int>(i) < sample_size) {
      if (!return_eids) {
        min_heap.push(phi::GraphWeightedNode<T>(out_src[i], weight_key));
      } else {
        min_heap.push(
            phi::GraphWeightedNode<T>(out_src[i], weight_key, out_eids[i]));
      }
    } else {
      const phi::GraphWeightedNode<T>& small = min_heap.top();
      phi::GraphWeightedNode<T> cmp;
      if (!return_eids) {
        cmp = GraphWeightedNode<T>(out_src[i], weight_key);
      } else {
        cmp = GraphWeightedNode<T>(out_src[i], weight_key, out_eids[i]);
      }
      bool flag = cmp > small;
      if (flag) {
        min_heap.pop();
        min_heap.push(cmp);
      }
    }
  }

  int cnt = 0;
  while (!min_heap.empty()) {
    const phi::GraphWeightedNode<T>& tmp = min_heap.top();
    out_src[cnt] = tmp.node_id;
    if (return_eids) {
      out_eids[cnt] = tmp.eid;
    }
    cnt++;
    min_heap.pop();
  }
}

template <typename T>
void SampleNeighbors(const T* row,
                     const T* col_ptr,
                     const float* edge_weight,
                     const T* eids,
                     const T* input,
                     std::vector<T>* output,
                     std::vector<int>* output_count,
                     std::vector<T>* output_eids,
                     int sample_size,
                     int bs,
                     bool return_eids) {
  std::vector<std::vector<T>> out_src_vec;
  std::vector<std::vector<float>> out_weight_vec;
  std::vector<std::vector<T>> out_eids_vec;
  // `sample_cumsum_sizes` record the start position and end position
  // after sampling.
  std::vector<int> sample_cumsum_sizes(bs + 1);
  // `total_neighbors` the size of output after sample.
  int total_neighbors = 0;
  sample_cumsum_sizes[0] = total_neighbors;
  for (int i = 0; i < bs; i++) {
    T node = input[i];
    int cap = col_ptr[node + 1] - col_ptr[node];
    int k = cap > sample_size ? sample_size : cap;
    total_neighbors += k;
    sample_cumsum_sizes[i + 1] = total_neighbors;
    std::vector<T> out_src;
    out_src.resize(cap);
    out_src_vec.emplace_back(out_src);
    std::vector<float> out_weight;
    out_weight.resize(cap);
    out_weight_vec.emplace_back(out_weight);
    if (return_eids) {
      std::vector<T> out_eids;
      out_eids.resize(cap);
      out_eids_vec.emplace_back(out_eids);
    }
  }

  output_count->resize(bs);
  output->resize(total_neighbors);
  if (return_eids) {
    output_eids->resize(total_neighbors);
  }

  std::random_device rd;
  std::mt19937 rng{rd()};
  std::uniform_real_distribution<float> dice_distribution(0, 1);

#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  // Sample the neighbors in parallelism.
  for (int i = 0; i < bs; i++) {
    T node = input[i];
    T begin = col_ptr[node], end = col_ptr[node + 1];
    int cap = end - begin;
    if (sample_size < cap) {  // sample_size < neighbor_len
      std::copy(row + begin, row + end, out_src_vec[i].begin());
      std::copy(
          edge_weight + begin, edge_weight + end, out_weight_vec[i].begin());
      if (return_eids) {
        std::copy(eids + begin, eids + end, out_eids_vec[i].begin());
      }
      SampleWeightedNeighbors(out_src_vec[i],
                              out_weight_vec[i],
                              out_eids_vec[i],
                              sample_size,
                              rng,
                              dice_distribution,
                              return_eids);
      *(output_count->data() + i) = sample_size;
    } else {  // sample_size >= neighbor_len, directly copy
      std::copy(row + begin, row + end, out_src_vec[i].begin());
      if (return_eids) {
        std::copy(eids + begin, eids + end, out_eids_vec[i].begin());
      }
      *(output_count->data() + i) = cap;
    }
  }

#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  // Copy the results parallelism
  for (int i = 0; i < bs; i++) {
    int k = sample_cumsum_sizes[i + 1] - sample_cumsum_sizes[i];
    std::copy(out_src_vec[i].begin(),
              out_src_vec[i].begin() + k,
              output->data() + sample_cumsum_sizes[i]);
    if (return_eids) {
      std::copy(out_eids_vec[i].begin(),
                out_eids_vec[i].begin() + k,
                output_eids->data() + sample_cumsum_sizes[i]);
    }
  }
}

template <typename T, typename Context>
void WeightedSampleNeighborsKernel(const Context& dev_ctx,
                                   const DenseTensor& row,
                                   const DenseTensor& col_ptr,
                                   const DenseTensor& edge_weight,
                                   const DenseTensor& x,
                                   const paddle::optional<DenseTensor>& eids,
                                   int sample_size,
                                   bool return_eids,
                                   DenseTensor* out,
                                   DenseTensor* out_count,
                                   DenseTensor* out_eids) {
  const T* row_data = row.data<T>();
  const T* col_ptr_data = col_ptr.data<T>();
  const float* weights_data = edge_weight.data<float>();
  const T* x_data = x.data<T>();
  const T* eids_data =
      (eids.get_ptr() == nullptr ? nullptr : eids.get_ptr()->data<T>());
  int bs = x.dims()[0];

  std::vector<T> output;
  std::vector<int> output_count;
  std::vector<T> output_eids;

  SampleNeighbors<T>(row_data,
                     col_ptr_data,
                     weights_data,
                     eids_data,
                     x_data,
                     &output,
                     &output_count,
                     &output_eids,
                     sample_size,
                     bs,
                     return_eids);

  if (return_eids) {
    out_eids->Resize({static_cast<int>(output_eids.size())});
    T* out_eids_data = dev_ctx.template Alloc<T>(out_eids);
    std::copy(output_eids.begin(), output_eids.end(), out_eids_data);
  }

  out->Resize({static_cast<int>(output.size())});
  T* out_data = dev_ctx.template Alloc<T>(out);
  std::copy(output.begin(), output.end(), out_data);
  out_count->Resize({bs});
  int* out_count_data = dev_ctx.template Alloc<int>(out_count);
  std::copy(output_count.begin(), output_count.end(), out_count_data);
}

}  // namespace phi

PD_REGISTER_KERNEL(weighted_sample_neighbors,
                   CPU,
                   ALL_LAYOUT,
                   phi::WeightedSampleNeighborsKernel,
                   int,
                   int64_t) {}