search.py 43.4 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
C
Chengmo 已提交
14
from __future__ import print_function
15
import numpy as np
Z
zhiboniu 已提交
16
import paddle
17
from ..framework import LayerHelper
C
Chengmo 已提交
18
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
Z
zhiboniu 已提交
19
from ..fluid import layers
20 21
from ..framework import core, in_dygraph_mode, _non_static_mode
from ..fluid.framework import _in_legacy_dygraph
22 23 24
from paddle.common_ops_import import convert_np_dtype_to_dtype_
from paddle.common_ops_import import Variable
from paddle.common_ops_import import VarDesc
25
from paddle import _C_ops, _legacy_C_ops
Z
zhiboniu 已提交
26
from .logic import logical_not
27

28
# TODO: define searching & indexing functions of a tensor
29 30
# from ..fluid.layers import has_inf  #DEFINE_ALIAS
# from ..fluid.layers import has_nan  #DEFINE_ALIAS
31

32 33
__all__ = []

34

35 36
def argsort(x, axis=-1, descending=False, name=None):
    """
37
    Sorts the input along the given axis, and returns the corresponding index tensor for the sorted output values. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
38 39 40 41 42 43

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
C
Chen Long 已提交
44
            as axis+R. Default is -1.
45 46 47
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
48
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
49 50 51 52 53 54

    Returns:
        Tensor: sorted indices(with the same shape as ``x``
        and with data type int64).

    Examples:
李灿 已提交
55

56
        .. code-block:: python
李灿 已提交
57

58 59
            import paddle
            
60 61 62 63 64 65 66
            x = paddle.to_tensor([[[5,8,9,5],
                                   [0,0,1,7],
                                   [6,9,2,4]],
                                  [[5,2,4,2],
                                   [4,7,7,9],
                                   [1,7,0,6]]], 
                                dtype='float32')
C
Chen Long 已提交
67 68 69 70
            out1 = paddle.argsort(x, axis=-1)
            out2 = paddle.argsort(x, axis=0)
            out3 = paddle.argsort(x, axis=1)
            
N
Noel 已提交
71
            print(out1)
W
wawltor 已提交
72 73 74
            #[[[0 3 1 2]
            #  [0 1 2 3]
            #  [2 3 0 1]]
75
            # [[1 3 2 0]
W
wawltor 已提交
76 77
            #  [0 1 2 3]
            #  [2 0 3 1]]]
C
Chen Long 已提交
78
            
N
Noel 已提交
79
            print(out2)
W
wawltor 已提交
80 81 82 83 84 85
            #[[[0 1 1 1]
            #  [0 0 0 0]
            #  [1 1 1 0]]
            # [[1 0 0 0]
            #  [1 1 1 1]
            #  [0 0 0 1]]]
C
Chen Long 已提交
86
            
N
Noel 已提交
87
            print(out3)
W
wawltor 已提交
88 89 90 91 92 93
            #[[[1 1 1 2]
            #  [0 0 2 0]
            #  [2 2 0 1]]
            # [[2 0 2 0]
            #  [1 1 0 2]
            #  [0 2 1 1]]]
94
    """
H
hong 已提交
95
    if in_dygraph_mode():
96
        _, ids = _C_ops.argsort(x, axis, descending)
H
hong 已提交
97 98 99
        return ids

    if _in_legacy_dygraph():
100 101
        _, ids = _legacy_C_ops.argsort(x, 'axis', axis, 'descending',
                                       descending)
102 103 104 105 106 107
        return ids
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'argsort')

    helper = LayerHelper("argsort", **locals())
108 109 110 111 112 113 114 115 116 117 118 119 120 121
    out = helper.create_variable_for_type_inference(dtype=x.dtype,
                                                    stop_gradient=True)
    ids = helper.create_variable_for_type_inference(VarDesc.VarType.INT64,
                                                    stop_gradient=True)
    helper.append_op(type='argsort',
                     inputs={'X': x},
                     outputs={
                         'Out': out,
                         'Indices': ids
                     },
                     attrs={
                         'axis': axis,
                         'descending': descending
                     })
122 123 124
    return ids


125
def argmax(x, axis=None, keepdim=False, dtype="int64", name=None):
126
    """
127
    Computes the indices of the max elements of the input tensor's
128 129 130
    element along the provided axis.

    Args:
W
wawltor 已提交
131
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
132 133
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
W
wawltor 已提交
134 135
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
136
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
137
        dtype(str|np.dtype, optional): Data type of the output tensor which can
138
                    be int32, int64. The default value is ``int64`` , and it will
139
                    return the int64 indices.
140
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
141 142

    Returns:
143
        Tensor, return the tensor of int32 if set :attr:`dtype` is int32, otherwise return the tensor of int64.
144 145 146 147

    Examples:
        .. code-block:: python

W
wawltor 已提交
148
            import paddle
149

150 151 152
            x = paddle.to_tensor([[5,8,9,5],
                                 [0,0,1,7],
                                 [6,9,2,4]])
W
wawltor 已提交
153
            out1 = paddle.argmax(x)
N
Noel 已提交
154
            print(out1) # 2
155
            out2 = paddle.argmax(x, axis=0)
N
Noel 已提交
156
            print(out2) 
157
            # [2, 2, 0, 1]
W
wawltor 已提交
158
            out3 = paddle.argmax(x, axis=-1)
N
Noel 已提交
159
            print(out3) 
160 161 162 163
            # [2, 3, 1]
            out4 = paddle.argmax(x, axis=0, keepdim=True)
            print(out4)
            # [[2, 2, 0, 1]]
164
    """
165
    if axis is not None and not isinstance(axis, (int, Variable)):
166
        raise TypeError(
167
            "The type of 'axis'  must be int or Tensor or None in argmax, but received %s."
168
            % (type(axis)))
169

170 171 172 173
    if dtype is None:
        raise ValueError(
            "the value of 'dtype' in argmax could not be None, but received None"
        )
174

175
    var_dtype = convert_np_dtype_to_dtype_(dtype)
W
wawltor 已提交
176 177 178 179 180
    flatten = False
    if axis is None:
        flatten = True
        axis = 0

H
hong 已提交
181
    if in_dygraph_mode():
182
        return _C_ops.argmax(x, axis, keepdim, flatten, var_dtype)
H
hong 已提交
183
    if _in_legacy_dygraph():
184 185
        out = _legacy_C_ops.arg_max(x, 'axis', axis, 'dtype', var_dtype,
                                    'keepdims', keepdim, 'flatten', flatten)
W
wawltor 已提交
186 187 188 189 190 191
        return out

    helper = LayerHelper("argmax", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmax')
192
    check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
193
    attrs = {}
W
wawltor 已提交
194 195 196 197
    out = helper.create_variable_for_type_inference(var_dtype)
    attrs['keepdims'] = keepdim
    attrs['axis'] = axis
    attrs['flatten'] = flatten
198
    attrs['dtype'] = var_dtype
199 200 201 202
    helper.append_op(type='arg_max',
                     inputs={'X': x},
                     outputs={'Out': [out]},
                     attrs=attrs)
W
wawltor 已提交
203 204 205 206
    out.stop_gradient = True
    return out


207
def argmin(x, axis=None, keepdim=False, dtype="int64", name=None):
W
wawltor 已提交
208
    """
209
    Computes the indices of the min elements of the input tensor's
W
wawltor 已提交
210 211 212 213 214 215 216 217
    element along the provided axis.

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
218
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
219
        dtype(str, optional): Data type of the output tensor which can
220
                    be int32, int64. The default value is 'int64', and it will
W
wawltor 已提交
221
                    return the int64 indices.
222 223
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
        
W
wawltor 已提交
224
    Returns:
225
        Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`.
W
wawltor 已提交
226 227 228

    Examples:
        .. code-block:: python
229

W
wawltor 已提交
230 231
            import paddle

232 233 234
            x =  paddle.to_tensor([[5,8,9,5],
                                     [0,0,1,7],
                                     [6,9,2,4]])
W
wawltor 已提交
235
            out1 = paddle.argmin(x)
N
Noel 已提交
236
            print(out1) # 4
237
            out2 = paddle.argmin(x, axis=0)
N
Noel 已提交
238
            print(out2) 
239
            # [1, 1, 1, 2]
W
wawltor 已提交
240
            out3 = paddle.argmin(x, axis=-1)
N
Noel 已提交
241
            print(out3) 
242 243 244 245
            # [0, 0, 2]
            out4 = paddle.argmin(x, axis=0, keepdim=True)
            print(out4)
            # [[1, 1, 1, 2]]
W
wawltor 已提交
246
    """
247
    if axis is not None and not isinstance(axis, (int, Variable)):
248
        raise TypeError(
249
            "The type of 'axis'  must be int or Tensor or None in argmin, but received %s."
250
            % (type(axis)))
251

252 253 254 255
    if dtype is None:
        raise ValueError(
            "the value of 'dtype' in argmin could not be None, but received None"
        )
256

257
    var_dtype = convert_np_dtype_to_dtype_(dtype)
W
wawltor 已提交
258
    flatten = False
259
    if axis is None:
W
wawltor 已提交
260 261 262
        flatten = True
        axis = 0

H
hong 已提交
263
    if in_dygraph_mode():
264
        return _C_ops.argmin(x, axis, keepdim, flatten, var_dtype)
H
hong 已提交
265
    if _in_legacy_dygraph():
266 267
        out = _legacy_C_ops.arg_min(x, 'axis', axis, 'dtype', var_dtype,
                                    'keepdims', keepdim, 'flatten', flatten)
W
wawltor 已提交
268 269 270 271 272 273
        return out

    helper = LayerHelper("argmin", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmin')
274
    check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
W
wawltor 已提交
275
    out = helper.create_variable_for_type_inference(var_dtype)
276
    attrs = {}
W
wawltor 已提交
277
    attrs['keepdims'] = keepdim
278
    attrs['axis'] = axis
W
wawltor 已提交
279
    attrs['flatten'] = flatten
280
    attrs['dtype'] = var_dtype
281 282 283 284
    helper.append_op(type='arg_min',
                     inputs={'X': x},
                     outputs={'Out': [out]},
                     attrs=attrs)
285 286
    out.stop_gradient = True
    return out
287 288


289
def index_select(x, index, axis=0, name=None):
290
    """
S
swtkiwi 已提交
291

292 293 294 295
    Returns a new tensor which indexes the ``input`` tensor along dimension ``axis`` using 
    the entries in ``index`` which is a Tensor. The returned tensor has the same number 
    of dimensions as the original ``x`` tensor. The dim-th dimension has the same 
    size as the length of ``index``; other dimensions have the same size as in the ``x`` tensor. 
C
Chengmo 已提交
296

297
    Args:
298 299 300
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        index (Tensor): The 1-D Tensor containing the indices to index. The data type of ``index`` must be int32 or int64.
        axis (int, optional): The dimension in which we index. Default: if None, the ``axis`` is 0.
301
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
302 303

    Returns:
304
        Tensor: A Tensor with same data type as ``x``.
305
    
306 307
    Examples:
        .. code-block:: python
308
            
309 310
            import paddle

311 312 313 314
            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]])
            index = paddle.to_tensor([0, 1, 1], dtype='int32')
315 316 317 318 319 320 321 322
            out_z1 = paddle.index_select(x=x, index=index)
            #[[1. 2. 3. 4.]
            # [5. 6. 7. 8.]
            # [5. 6. 7. 8.]]
            out_z2 = paddle.index_select(x=x, index=index, axis=1)
            #[[ 1.  2.  2.]
            # [ 5.  6.  6.]
            # [ 9. 10. 10.]]
323
    """
324

F
From00 已提交
325
    if in_dygraph_mode():
326
        return _C_ops.index_select(x, index, axis)
F
From00 已提交
327 328

    if _in_legacy_dygraph():
329
        return _legacy_C_ops.index_select(x, index, 'dim', axis)
330

331 332 333
    helper = LayerHelper("index_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.index_select')
334
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
335
                             'paddle.tensor.search.index_select')
336

337
    out = helper.create_variable_for_type_inference(x.dtype)
338

339 340 341 342 343 344 345
    helper.append_op(type='index_select',
                     inputs={
                         'X': x,
                         'Index': index
                     },
                     outputs={'Out': out},
                     attrs={'dim': axis})
346 347 348
    return out


349
def nonzero(x, as_tuple=False):
350 351 352 353 354 355 356 357
    """
    Return a tensor containing the indices of all non-zero elements of the `input` 
    tensor. If as_tuple is True, return a tuple of 1-D tensors, one for each dimension 
    in `input`, each containing the indices (in that dimension) of all non-zero elements 
    of `input`. Given a n-Dimensional `input` tensor with shape [x_1, x_2, ..., x_n], If 
    as_tuple is False, we can get a output tensor with shape [z, n], where `z` is the 
    number of all non-zero elements in the `input` tensor. If as_tuple is True, we can get 
    a 1-D tensor tuple of length `n`, and the shape of each 1-D tensor is [z, 1].
C
Chengmo 已提交
358

359
    Args:
360
        x (Tensor): The input tensor variable.
361 362 363
        as_tuple (bool): Return type, Tensor or tuple of Tensor.

    Returns:
364
        Tensor. The data type is int64.
365 366

    Examples:
367

N
Noel 已提交
368
        .. code-block:: python
李灿 已提交
369

370
            import paddle
371 372

            x1 = paddle.to_tensor([[1.0, 0.0, 0.0],
N
Noel 已提交
373 374
                                   [0.0, 2.0, 0.0],
                                   [0.0, 0.0, 3.0]])
375 376
            x2 = paddle.to_tensor([0.0, 1.0, 0.0, 3.0])
            out_z1 = paddle.nonzero(x1)
N
Noel 已提交
377
            print(out_z1)
378 379 380 381 382
            #[[0 0]
            # [1 1]
            # [2 2]]
            out_z1_tuple = paddle.nonzero(x1, as_tuple=True)
            for out in out_z1_tuple:
N
Noel 已提交
383
                print(out)
384 385 386 387 388 389 390
            #[[0]
            # [1]
            # [2]]
            #[[0]
            # [1]
            # [2]]
            out_z2 = paddle.nonzero(x2)
N
Noel 已提交
391
            print(out_z2)
392 393 394 395
            #[[1]
            # [3]]
            out_z2_tuple = paddle.nonzero(x2, as_tuple=True)
            for out in out_z2_tuple:
N
Noel 已提交
396
                print(out)
397 398
            #[[1]
            # [3]]
N
Noel 已提交
399

400 401
    """
    list_out = []
402
    shape = x.shape
403 404
    rank = len(shape)

405
    if in_dygraph_mode():
W
wanghuancoder 已提交
406
        outs = _C_ops.where_index(x)
407 408
    elif paddle.in_dynamic_mode():
        outs = _legacy_C_ops.where_index(x)
409
    else:
410 411 412 413 414
        helper = LayerHelper("where_index", **locals())

        outs = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.INT64)

415 416 417
        helper.append_op(type='where_index',
                         inputs={'Condition': x},
                         outputs={'Out': [outs]})
418 419 420 421 422 423 424 425

    if not as_tuple:
        return outs
    elif rank == 1:
        return tuple([outs])
    else:
        for i in range(rank):
            list_out.append(
426
                paddle.slice(outs, axes=[1], starts=[i], ends=[i + 1]))
427 428 429
        return tuple(list_out)


430
def sort(x, axis=-1, descending=False, name=None):
431
    """
S
swtkiwi 已提交
432

433
    Sorts the input along the given axis, and returns the sorted output tensor. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
C
Chengmo 已提交
434

435
    Args:
436
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
437 438 439
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
440
            as axis+R. Default is -1.
441 442 443
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
444 445
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
        
446
    Returns:
W
wawltor 已提交
447
        Tensor: sorted tensor(with the same shape and data type as ``x``).
448
    Examples:
N
Noel 已提交
449

450
        .. code-block:: python
N
Noel 已提交
451

452
            import paddle
N
Noel 已提交
453

454 455 456 457 458 459 460
            x = paddle.to_tensor([[[5,8,9,5],
                                   [0,0,1,7],
                                   [6,9,2,4]],
                                  [[5,2,4,2],
                                   [4,7,7,9],
                                   [1,7,0,6]]], 
                                 dtype='float32')
461 462 463
            out1 = paddle.sort(x=x, axis=-1)
            out2 = paddle.sort(x=x, axis=0)
            out3 = paddle.sort(x=x, axis=1)
N
Noel 已提交
464
            print(out1)
W
wawltor 已提交
465 466 467 468 469 470
            #[[[5. 5. 8. 9.]
            #  [0. 0. 1. 7.]
            #  [2. 4. 6. 9.]]
            # [[2. 2. 4. 5.]
            #  [4. 7. 7. 9.]
            #  [0. 1. 6. 7.]]]
N
Noel 已提交
471
            print(out2)
472
            #[[[5. 2. 4. 2.]
W
wawltor 已提交
473 474 475 476 477
            #  [0. 0. 1. 7.]
            #  [1. 7. 0. 4.]]
            # [[5. 8. 9. 5.]
            #  [4. 7. 7. 9.]
            #  [6. 9. 2. 6.]]]
N
Noel 已提交
478
            print(out3)
479
            #[[[0. 0. 1. 4.]
W
wawltor 已提交
480 481 482 483 484
            #  [5. 8. 2. 5.]
            #  [6. 9. 9. 7.]]
            # [[1. 2. 0. 2.]
            #  [4. 7. 4. 6.]
            #  [5. 7. 7. 9.]]]
485
    """
486
    if in_dygraph_mode():
487
        outs, _ = _C_ops.argsort(x, axis, descending)
488 489 490
        return outs

    if _in_legacy_dygraph():
491 492
        outs, _ = _legacy_C_ops.argsort(x, 'axis', axis, 'descending',
                                        descending)
493
        return outs
494
    helper = LayerHelper("sort", **locals())
495 496 497 498 499 500 501 502 503 504 505 506 507 508
    out = helper.create_variable_for_type_inference(dtype=x.dtype,
                                                    stop_gradient=False)
    ids = helper.create_variable_for_type_inference(VarDesc.VarType.INT64,
                                                    stop_gradient=True)
    helper.append_op(type='argsort',
                     inputs={'X': x},
                     outputs={
                         'Out': out,
                         'Indices': ids
                     },
                     attrs={
                         'axis': axis,
                         'descending': descending
                     })
W
wawltor 已提交
509
    return out
C
Chengmo 已提交
510 511


512 513
def mode(x, axis=-1, keepdim=False, name=None):
    """
514
    Used to find values and indices of the modes at the optional axis.
515 516 517 518 519 520 521

    Args:
        x(Tensor): Tensor, an input N-D Tensor with type float32, float64, int32, int64.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is -1.
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
522
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.

    Examples:

        .. code-block:: python

           import paddle
           
           tensor = paddle.to_tensor([[[1,2,2],[2,3,3]],[[0,5,5],[9,9,0]]], dtype=paddle.float32)
           res = paddle.mode(tensor, 2)
           print(res)
           # (Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
           #   [[2., 3.],
           #    [5., 9.]]), Tensor(shape=[2, 2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
           #   [[1, 1],
           #    [1, 0]]))
           
    """
543
    if in_dygraph_mode():
544
        return _C_ops.mode(x, axis, keepdim)
545
    if _in_legacy_dygraph():
546
        return _legacy_C_ops.mode(x, "axis", axis, "keepdim", keepdim)
547 548 549 550 551 552 553 554 555 556

    helper = LayerHelper("mode", **locals())
    inputs = {"X": [x]}
    attrs = {}
    attrs['axis'] = axis
    attrs['keepdim'] = keepdim

    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

557 558 559 560 561 562 563
    helper.append_op(type="mode",
                     inputs=inputs,
                     outputs={
                         "Out": [values],
                         "Indices": [indices]
                     },
                     attrs=attrs)
564 565 566 567
    indices.stop_gradient = True
    return values, indices


R
ronnywang 已提交
568
def where(condition, x=None, y=None, name=None):
569
    r"""
570
    Return a Tensor of elements selected from either :attr:`x` or :attr:`y` according to corresponding elements of :attr:`condition`. Concretely,
R
ronnywang 已提交
571

572
    .. math::
C
Chengmo 已提交
573

574 575 576 577 578
        out_i =
        \begin{cases}
        x_i, & \text{if}  \ condition_i \  \text{is} \ True \\
        y_i, & \text{if}  \ condition_i \  \text{is} \ False \\
        \end{cases}.
C
Chengmo 已提交
579

580 581
    Notes:
        ``numpy.where(condition)`` is identical to ``paddle.nonzero(condition, as_tuple=True)``, please refer to :ref:`api_tensor_search_nonzero`.
582

583
    Args:
584 585 586 587
        condition (Tensor): The condition to choose x or y. When True (nonzero), yield x, otherwise yield y.
        x (Tensor|scalar, optional): A Tensor or scalar to choose when the condition is True with data type of float32, float64, int32 or int64. Either both or neither of x and y should be given.
        y (Tensor|scalar, optional): A Tensor or scalar to choose when the condition is False with data type of float32, float64, int32 or int64. Either both or neither of x and y should be given.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
588

589
    Returns:
590
        Tensor: A Tensor with the same shape as :attr:`condition` and same data type as :attr:`x` and :attr:`y`.
591

592
    Examples:
593
        
594 595
        .. code-block:: python

596
            import paddle
597
            
598 599
            x = paddle.to_tensor([0.9383, 0.1983, 3.2, 1.2])
            y = paddle.to_tensor([1.0, 1.0, 1.0, 1.0])
600
            
601 602 603
            out = paddle.where(x>1, x, y)
            print(out)
            #out: [1.0, 1.0, 3.2, 1.2]
604
            
605 606 607 608 609
            out = paddle.where(x>1)
            print(out)
            #out: (Tensor(shape=[2, 1], dtype=int64, place=CPUPlace, stop_gradient=True,
            #            [[2],
            #             [3]]),)
610
    """
R
ronnywang 已提交
611
    if np.isscalar(x):
612
        x = paddle.full([1], x, np.array([x]).dtype.name)
R
ronnywang 已提交
613 614

    if np.isscalar(y):
615
        y = paddle.full([1], y, np.array([y]).dtype.name)
R
ronnywang 已提交
616

R
ronnywang 已提交
617 618 619 620 621 622
    if x is None and y is None:
        return nonzero(condition, as_tuple=True)

    if x is None or y is None:
        raise ValueError("either both or neither of x and y should be given")

Z
zhiboniu 已提交
623
    if not paddle.in_dynamic_mode():
624
        check_variable_and_dtype(condition, 'condition', ['bool'], 'where')
625 626 627 628 629 630
        check_variable_and_dtype(x, 'x',
                                 ['float32', 'float64', 'int32', 'int64'],
                                 'where')
        check_variable_and_dtype(y, 'y',
                                 ['float32', 'float64', 'int32', 'int64'],
                                 'where')
631

632
    condition_shape = list(condition.shape)
633 634
    x_shape = list(x.shape)
    y_shape = list(y.shape)
635

636
    if x_shape == y_shape and condition_shape == x_shape:
637 638 639 640
        broadcast_condition = condition
        broadcast_x = x
        broadcast_y = y
    else:
Z
zhiboniu 已提交
641 642 643 644 645 646 647 648 649 650 651 652 653
        zeros_like_x = paddle.zeros_like(x)
        zeros_like_y = paddle.zeros_like(y)
        zeros_like_condition = paddle.zeros_like(condition)
        zeros_like_condition = paddle.cast(zeros_like_condition, x.dtype)
        cast_cond = paddle.cast(condition, x.dtype)

        broadcast_zeros = paddle.add(zeros_like_x, zeros_like_y)
        broadcast_zeros = paddle.add(broadcast_zeros, zeros_like_condition)
        broadcast_x = paddle.add(x, broadcast_zeros)
        broadcast_y = paddle.add(y, broadcast_zeros)
        broadcast_condition = paddle.add(cast_cond, broadcast_zeros)
        broadcast_condition = paddle.cast(broadcast_condition, 'bool')

J
Jiabin Yang 已提交
654
    if in_dygraph_mode():
655
        return _C_ops.where(broadcast_condition, broadcast_x, broadcast_y)
656
    else:
J
Jiabin Yang 已提交
657
        if _in_legacy_dygraph():
658 659
            return _legacy_C_ops.where(broadcast_condition, broadcast_x,
                                       broadcast_y)
J
Jiabin Yang 已提交
660 661 662 663
        else:
            helper = LayerHelper("where", **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)

664 665 666 667 668 669 670
            helper.append_op(type='where',
                             inputs={
                                 'Condition': broadcast_condition,
                                 'X': broadcast_x,
                                 'Y': broadcast_y
                             },
                             outputs={'Out': [out]})
671

J
Jiabin Yang 已提交
672
            return out
673 674


C
Chengmo 已提交
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
def index_sample(x, index):
    """
    **IndexSample Layer**

    IndexSample OP returns the element of the specified location of X, 
    and the location is specified by Index. 

    .. code-block:: text


                Given:

                X = [[1, 2, 3, 4, 5],
                     [6, 7, 8, 9, 10]]

                Index = [[0, 1, 3],
                         [0, 2, 4]]

                Then:

                Out = [[1, 2, 4],
                       [6, 8, 10]]

    Args:
C
Chengmo 已提交
699
        x (Tensor): The source input tensor with 2-D shape. Supported data type is 
C
Chengmo 已提交
700
            int32, int64, float32, float64.
C
Chengmo 已提交
701
        index (Tensor): The index input tensor with 2-D shape, first dimension should be same with X. 
C
Chengmo 已提交
702 703 704
            Data type is int32 or int64.

    Returns:
C
Chengmo 已提交
705
        output (Tensor): The output is a tensor with the same shape as index.
C
Chengmo 已提交
706 707 708 709 710 711

    Examples:

        .. code-block:: python

            import paddle
712 713 714 715 716 717 718 719 720 721 722

            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]], dtype='float32')
            index = paddle.to_tensor([[0, 1, 2],
                                      [1, 2, 3],
                                      [0, 0, 0]], dtype='int32')
            target = paddle.to_tensor([[100, 200, 300, 400],
                                       [500, 600, 700, 800],
                                       [900, 1000, 1100, 1200]], dtype='int32')
            out_z1 = paddle.index_sample(x, index)
N
Noel 已提交
723
            print(out_z1)
724 725 726 727 728 729 730 731
            #[[1. 2. 3.]
            # [6. 7. 8.]
            # [9. 9. 9.]]

            # Use the index of the maximum value by topk op
            # get the value of the element of the corresponding index in other tensors
            top_value, top_index = paddle.topk(x, k=2)
            out_z2 = paddle.index_sample(target, top_index)
N
Noel 已提交
732
            print(top_value)
733 734 735 736
            #[[ 4.  3.]
            # [ 8.  7.]
            # [12. 11.]]

N
Noel 已提交
737
            print(top_index)
738 739 740 741
            #[[3 2]
            # [3 2]
            # [3 2]]

N
Noel 已提交
742
            print(out_z2)
743 744 745
            #[[ 400  300]
            # [ 800  700]
            # [1200 1100]]
C
Chengmo 已提交
746

C
Chengmo 已提交
747
    """
J
Jiabin Yang 已提交
748
    if in_dygraph_mode():
749
        return _C_ops.index_sample(x, index)
J
Jiabin Yang 已提交
750 751
    else:
        if _in_legacy_dygraph():
752
            return _legacy_C_ops.index_sample(x, index)
J
Jiabin Yang 已提交
753 754 755 756 757 758 759 760 761
        else:
            helper = LayerHelper("index_sample", **locals())
            check_variable_and_dtype(x, 'x',
                                     ['float32', 'float64', 'int32', 'int64'],
                                     'paddle.tensor.search.index_sample')
            check_variable_and_dtype(index, 'index', ['int32', 'int64'],
                                     'paddle.tensor.search.index_sample')
            out = helper.create_variable_for_type_inference(dtype=x.dtype)

762 763 764 765 766 767
            helper.append_op(type='index_sample',
                             inputs={
                                 'X': x,
                                 'Index': index
                             },
                             outputs={'Out': out})
J
Jiabin Yang 已提交
768
            return out
769 770 771 772


def masked_select(x, mask, name=None):
    """
C
Chen Long 已提交
773
    Returns a new 1-D tensor which indexes the input tensor according to the ``mask``
774 775 776 777 778
    which is a tensor with data type of bool.

    Args:
        x (Tensor): The input Tensor, the data type can be int32, int64, float32, float64. 
        mask (Tensor): The Tensor containing the binary mask to index with, it's data type is bool.
779
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
780

781 782
    Returns: 
        A 1-D Tensor which is the same data type  as ``x``.
783 784 785 786 787 788
    
    Examples:

        .. code-block:: python

            import paddle
789 790 791 792 793 794 795

            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]])
            mask = paddle.to_tensor([[True, False, False, False],
                                     [True, True, False, False],
                                     [True, False, False, False]])
796 797 798 799
            out = paddle.masked_select(x, mask)
            #[1.0 5.0 6.0 9.0]
    """

H
hong 已提交
800
    if in_dygraph_mode():
801
        return _C_ops.masked_select(x, mask)
H
hong 已提交
802 803

    if _in_legacy_dygraph():
804
        return _legacy_C_ops.masked_select(x, mask)
805 806 807 808 809 810 811

    helper = LayerHelper("masked_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.mask_select')
    check_variable_and_dtype(mask, 'mask', ['bool'],
                             'paddle.tensor.search.masked_select')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
812 813 814 815 816 817
    helper.append_op(type='masked_select',
                     inputs={
                         'X': x,
                         'Mask': mask
                     },
                     outputs={'Y': out})
818
    return out
W
wawltor 已提交
819 820 821 822


def topk(x, k, axis=None, largest=True, sorted=True, name=None):
    """
823
    Return values and indices of the k largest or smallest at the optional axis.
W
wawltor 已提交
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
    If the input is a 1-D Tensor, finds the k largest or smallest values and indices.
    If the input is a Tensor with higher rank, this operator computes the top k values and indices along the :attr:`axis`.

    Args:
        x(Tensor): Tensor, an input N-D Tensor with type float32, float64, int32, int64.
        k(int, Tensor): The number of top elements to look for along the axis.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is -1.
        largest(bool, optional) : largest is a flag, if set to true,
            algorithm will sort by descending order, otherwise sort by
            ascending order. Default is True.
        sorted(bool, optional): controls whether to return the elements in sorted order, default value is True. In gpu device, it always return the sorted value. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.

    Examples:

        .. code-block:: python
845

846
            import paddle
W
wawltor 已提交
847

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
            data_1 = paddle.to_tensor([1, 4, 5, 7])
            value_1, indices_1 = paddle.topk(data_1, k=1)
            print(value_1) # [7]
            print(indices_1) # [3]

            data_2 = paddle.to_tensor([[1, 4, 5, 7], [2, 6, 2, 5]])
            value_2, indices_2 = paddle.topk(data_2, k=1)
            print(value_2) # [[7], [6]]
            print(indices_2) # [[3], [1]]

            value_3, indices_3 = paddle.topk(data_2, k=1, axis=-1)
            print(value_3) # [[7], [6]]
            print(indices_3) # [[3], [1]]

            value_4, indices_4 = paddle.topk(data_2, k=1, axis=0)
            print(value_4) # [[2, 6, 5, 7]]
            print(indices_4) # [[1, 1, 0, 0]]
W
wawltor 已提交
865 866 867


    """
H
hong 已提交
868

H
hong 已提交
869 870 871
    if in_dygraph_mode():
        if axis == None:
            axis = -1
872
        out, indices = _C_ops.top_k(x, k, axis, largest, sorted)
H
hong 已提交
873 874
        return out, indices

H
hong 已提交
875
    if _non_static_mode():
W
wawltor 已提交
876
        if axis is None:
877 878
            out, indices = _legacy_C_ops.top_k_v2(x, 'k', int(k), 'largest',
                                                  largest, 'sorted', sorted)
W
wawltor 已提交
879
        else:
880 881 882
            out, indices = _legacy_C_ops.top_k_v2(x, 'k', int(k), 'axis', axis,
                                                  'largest', largest, 'sorted',
                                                  sorted)
W
wawltor 已提交
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
        return out, indices

    helper = LayerHelper("top_k_v2", **locals())
    inputs = {"X": [x]}
    attrs = {}
    if isinstance(k, Variable):
        inputs['K'] = [k]
    else:
        attrs = {'k': k}
    attrs['largest'] = largest
    attrs['sorted'] = sorted
    if axis is not None:
        attrs['axis'] = axis

    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

900 901 902 903 904 905 906
    helper.append_op(type="top_k_v2",
                     inputs=inputs,
                     outputs={
                         "Out": [values],
                         "Indices": [indices]
                     },
                     attrs=attrs)
W
wawltor 已提交
907 908
    indices.stop_gradient = True
    return values, indices
Y
Yanxing Shi 已提交
909 910


911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
def bucketize(x, sorted_sequence, out_int32=False, right=False, name=None):
    """
    This API is used to find the index of the corresponding 1D tensor `sorted_sequence` in the innermost dimension based on the given `x`.

    Args:
        x(Tensor): An input N-D tensor value with type int32, int64, float32, float64.
        sorted_sequence(Tensor): An input 1-D tensor with type int32, int64, float32, float64. The value of the tensor monotonically increases in the innermost dimension. 
        out_int32(bool, optional): Data type of the output tensor which can be int32, int64. The default value is False, and it indicates that the output data type is int64.
        right(bool, optional): Find the upper or lower bounds of the sorted_sequence range in the innermost dimension based on the given `x`. If the value of the sorted_sequence is nan or inf, return the size of the innermost dimension.
                               The default value is False and it shows the lower bounds.  
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.
        
    Returns:
        Tensor(the same sizes of the `x`), return the tensor of int32 if set :attr:`out_int32` is True, otherwise return the tensor of int64.  
    
    Examples:

        .. code-block:: python
    
            import paddle

            sorted_sequence = paddle.to_tensor([2, 4, 8, 16], dtype='int32')
            x = paddle.to_tensor([[0, 8, 4, 16], [-1, 2, 8, 4]], dtype='int32')
            out1 = paddle.bucketize(x, sorted_sequence)
            print(out1)
            # Tensor(shape=[2, 4], dtype=int64, place=CPUPlace, stop_gradient=True,
            #        [[0, 2, 1, 3],
            #         [0, 0, 2, 1]])
            out2 = paddle.bucketize(x, sorted_sequence, right=True)
            print(out2)
            # Tensor(shape=[2, 4], dtype=int64, place=CPUPlace, stop_gradient=True,
            #        [[0, 3, 2, 4],
            #         [0, 1, 3, 2]])
            out3 = x.bucketize(sorted_sequence)
            print(out3)
            # Tensor(shape=[2, 4], dtype=int64, place=CPUPlace, stop_gradient=True,
            #        [[0, 2, 1, 3],
            #         [0, 0, 2, 1]])
            out4 = x.bucketize(sorted_sequence, right=True)
            print(out4)
            # Tensor(shape=[2, 4], dtype=int64, place=CPUPlace, stop_gradient=True,
            #        [[0, 3, 2, 4],
            #         [0, 1, 3, 2]])
            
    """
    check_variable_and_dtype(sorted_sequence, 'SortedSequence',
                             ['float32', 'float64', 'int32', 'int64'],
                             'paddle.searchsorted')
    if sorted_sequence.dim() != 1:
        raise ValueError(
            f"sorted_sequence tensor must be 1 dimension, but got dim {sorted_sequence.dim()}"
        )
    return searchsorted(sorted_sequence, x, out_int32, right, name)


Y
Yanxing Shi 已提交
966 967 968 969 970 971
def searchsorted(sorted_sequence,
                 values,
                 out_int32=False,
                 right=False,
                 name=None):
    """
972
    Find the index of the corresponding `sorted_sequence` in the innermost dimension based on the given `values`.
Y
Yanxing Shi 已提交
973 974 975 976 977 978 979

    Args:
        sorted_sequence(Tensor): An input N-D or 1-D tensor with type int32, int64, float32, float64. The value of the tensor monotonically increases in the innermost dimension. 
        values(Tensor): An input N-D tensor value with type int32, int64, float32, float64.
        out_int32(bool, optional): Data type of the output tensor which can be int32, int64. The default value is False, and it indicates that the output data type is int64.
        right(bool, optional): Find the upper or lower bounds of the sorted_sequence range in the innermost dimension based on the given `values`. If the value of the sorted_sequence is nan or inf, return the size of the innermost dimension.
                               The default value is False and it shows the lower bounds.  
980
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Y
Yanxing Shi 已提交
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
        
    Returns:
        Tensor(the same sizes of the `values`), return the tensor of int32 if set :attr:`out_int32` is True, otherwise return the tensor of int64.  
    
    Examples:

        .. code-block:: python
    
            import paddle

            sorted_sequence = paddle.to_tensor([[1, 3, 5, 7, 9, 11],
                                                [2, 4, 6, 8, 10, 12]], dtype='int32')
            values = paddle.to_tensor([[3, 6, 9, 10], [3, 6, 9, 10]], dtype='int32')
            out1 = paddle.searchsorted(sorted_sequence, values)
            print(out1)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[1, 3, 4, 5],
            #         [1, 2, 4, 4]])
            out2 = paddle.searchsorted(sorted_sequence, values, right=True)
            print(out2)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[2, 3, 5, 5],
            #         [1, 3, 4, 5]])
            sorted_sequence_1d = paddle.to_tensor([1, 3, 5, 7, 9, 11, 13])
            out3 = paddle.searchsorted(sorted_sequence_1d, values)     
            print(out3)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[1, 3, 4, 5],
            #         [1, 3, 4, 5]])
            
    """
F
From00 已提交
1012
    if in_dygraph_mode():
1013
        return _C_ops.searchsorted(sorted_sequence, values, out_int32, right)
Y
Yanxing Shi 已提交
1014

F
From00 已提交
1015
    if _in_legacy_dygraph():
1016 1017
        return _legacy_C_ops.searchsorted(sorted_sequence, values, "out_int32",
                                          out_int32, "right", right)
Y
Yanxing Shi 已提交
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028

    check_variable_and_dtype(sorted_sequence, 'SortedSequence',
                             ['float32', 'float64', 'int32', 'int64'],
                             'paddle.searchsorted')
    check_variable_and_dtype(values, 'Values',
                             ['float32', 'float64', 'int32', 'int64'],
                             'paddle.searchsorted')

    helper = LayerHelper('searchsorted', **locals())
    out_type = 'int32' if out_int32 else 'int64'
    out = helper.create_variable_for_type_inference(dtype=out_type)
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
    helper.append_op(type='searchsorted',
                     inputs={
                         'SortedSequence': sorted_sequence,
                         "Values": values
                     },
                     outputs={'Out': out},
                     attrs={
                         "out_int32": out_int32,
                         "right": right
                     })
Y
Yanxing Shi 已提交
1039 1040

    return out
1041 1042 1043 1044


def kthvalue(x, k, axis=None, keepdim=False, name=None):
    """
1045
    Find values and indices of the k-th smallest at the axis.
1046 1047 1048 1049 1050 1051 1052 1053

    Args:
        x(Tensor): A N-D Tensor with type float32, float64, int32, int64.
        k(int): The k for the k-th smallest number to look for along the axis.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. The default is None. And if the axis is None, it will computed as -1 by default.
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
1054
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.
   
    Examples:

        .. code-block:: python
    
            import paddle
            
            x = paddle.randn((2,3,2))
            # Tensor(shape=[2, 3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[[ 0.22954939, -0.01296274],
            #         [ 1.17135799, -0.34493217],
            #         [-0.19550551, -0.17573971]],
            #
            #        [[ 0.15104349, -0.93965352],
            #         [ 0.14745511,  0.98209465],
            #         [ 0.10732264, -0.55859774]]])           
            y = paddle.kthvalue(x, 2, 1)    
            # (Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            # [[ 0.22954939, -0.17573971],
            #  [ 0.14745511, -0.55859774]]), Tensor(shape=[2, 2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #  [[0, 2],
            #  [1, 2]]))
    """
1081
    if _non_static_mode():
1082
        if axis is not None:
1083
            if _in_legacy_dygraph():
1084 1085 1086
                return _legacy_C_ops.kthvalue(x, 'k', k, "axis", axis,
                                              "keepdim", keepdim)
            return _C_ops.kthvalue(x, k, axis, keepdim)
1087
        else:
1088
            if _in_legacy_dygraph():
1089 1090
                return _legacy_C_ops.kthvalue(x, 'k', k, "keepdim", keepdim)
            return _C_ops.kthvalue(x, k, -1, keepdim)
1091 1092 1093 1094 1095 1096 1097 1098 1099

    helper = LayerHelper("kthvalue", **locals())
    inputs = {"X": [x]}
    attrs = {'k': k}
    if axis is not None:
        attrs['axis'] = axis
    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

1100 1101 1102 1103 1104 1105 1106
    helper.append_op(type="kthvalue",
                     inputs=inputs,
                     outputs={
                         "Out": [values],
                         "Indices": [indices]
                     },
                     attrs=attrs)
1107 1108
    indices.stop_gradient = True
    return values, indices