init.cc 6.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dzhwinter 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yu 已提交
14
#include <string.h>  // for strdup
D
dzhwinter 已提交
15
#include <algorithm>
Q
qingqing01 已提交
16 17
#include <memory>
#include <set>
D
dzhwinter 已提交
18
#include <stdexcept>
D
dzhwinter 已提交
19 20
#include <string>

Y
Yi Wang 已提交
21
#include "paddle/fluid/framework/operator.h"
T
tensor-tang 已提交
22
#include "paddle/fluid/platform/cpu_helper.h"
T
tensor-tang 已提交
23
#include "paddle/fluid/platform/cpu_info.h"
24
#include "paddle/fluid/string/split.h"
S
sneaxiy 已提交
25
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
26
#include "paddle/fluid/platform/cuda_device_guard.h"
27
#include "paddle/fluid/platform/dynload/cupti.h"
S
sneaxiy 已提交
28
#endif
Y
Yi Wang 已提交
29
#include "paddle/fluid/platform/device_context.h"
30
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/platform/place.h"
32
#include "paddle/fluid/string/piece.h"
D
dzhwinter 已提交
33

G
gongweibao 已提交
34
#if defined(PADDLE_WITH_DGC)
35 36 37
#include "dgc/dgc.h"
#endif

T
tensor-tang 已提交
38 39
DEFINE_int32(paddle_num_threads, 1,
             "Number of threads for each paddle instance.");
40 41 42
DEFINE_int32(multiple_of_cupti_buffer_size, 1,
             "Multiple of the CUPTI device buffer size. If the timestamps have "
             "been dropped when you are profiling, try increasing this value.");
T
tensor-tang 已提交
43

D
dzhwinter 已提交
44 45 46 47
namespace paddle {
namespace framework {

std::once_flag gflags_init_flag;
X
Xin Pan 已提交
48
std::once_flag p2p_init_flag;
D
dzhwinter 已提交
49

50 51 52 53
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
std::once_flag dgc_init_flag;
#endif

54
void InitGflags(std::vector<std::string> argv) {
D
dzhwinter 已提交
55
  std::call_once(gflags_init_flag, [&]() {
C
chengduo 已提交
56
    FLAGS_logtostderr = true;
W
wanghaoshuang 已提交
57
    argv.insert(argv.begin(), "dummy");
D
dzhwinter 已提交
58 59 60 61 62 63 64 65 66
    int argc = argv.size();
    char **arr = new char *[argv.size()];
    std::string line;
    for (size_t i = 0; i < argv.size(); i++) {
      arr[i] = &argv[i][0];
      line += argv[i];
      line += ' ';
    }
    google::ParseCommandLineFlags(&argc, &arr, true);
M
minqiyang 已提交
67
    VLOG(1) << "Init commandline: " << line;
D
dzhwinter 已提交
68 69 70
  });
}

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
void InitP2P(std::vector<int> devices) {
#ifdef PADDLE_WITH_CUDA
  std::call_once(p2p_init_flag, [&]() {
    int count = devices.size();
    for (int i = 0; i < count; ++i) {
      for (int j = 0; j < count; ++j) {
        if (devices[i] == devices[j]) continue;
        int can_acess = -1;
        PADDLE_ENFORCE(
            cudaDeviceCanAccessPeer(&can_acess, devices[i], devices[j]),
            "Failed to test P2P access.");
        if (can_acess != 1) {
          LOG(WARNING) << "Cannot enable P2P access from " << devices[i]
                       << " to " << devices[j];
        } else {
Y
Yu Yang 已提交
86
          platform::CUDADeviceGuard guard(devices[i]);
87 88 89 90 91 92 93 94
          cudaDeviceEnablePeerAccess(devices[j], 0);
        }
      }
    }
  });
#endif
}

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
void InitCupti() {
#ifdef PADDLE_WITH_CUPTI
  if (FLAGS_multiple_of_cupti_buffer_size == 1) return;
  size_t attrValue = 0, attrValueSize = sizeof(size_t);
#define MULTIPLY_ATTR_VALUE(attr)                                 \
  {                                                               \
    PADDLE_ENFORCE(!platform::dynload::cuptiActivityGetAttribute( \
        attr, &attrValueSize, &attrValue));                       \
    attrValue *= FLAGS_multiple_of_cupti_buffer_size;             \
    LOG(WARNING) << "Set " #attr " " << attrValue << " byte";     \
    PADDLE_ENFORCE(!platform::dynload::cuptiActivitySetAttribute( \
        attr, &attrValueSize, &attrValue));                       \
  }
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_DEVICE_BUFFER_SIZE);
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_DEVICE_BUFFER_SIZE_CDP);
#if CUDA_VERSION >= 9000
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_PROFILING_SEMAPHORE_POOL_SIZE);
#endif
#undef MULTIPLY_ATTR_VALUE
#endif
}

X
Xin Pan 已提交
117
void InitDevices(bool init_p2p) {
118 119 120
  // CUPTI attribute should be set before any CUDA context is created (see CUPTI
  // documentation about CUpti_ActivityAttribute).
  InitCupti();
121
  /*Init all available devices by default */
122
  std::vector<int> devices;
123
#ifdef PADDLE_WITH_CUDA
D
dzhwinter 已提交
124
  try {
125 126
    // use user specified GPUs in single-node multi-process mode.
    devices = platform::GetSelectedDevices();
D
dzhwinter 已提交
127 128
  } catch (const std::exception &exp) {
    LOG(WARNING) << "Compiled with WITH_GPU, but no GPU found in runtime.";
129
  }
D
dzhwinter 已提交
130
#endif
131
  InitDevices(init_p2p, devices);
D
dzhwinter 已提交
132 133
}

134 135 136 137
void InitDevices(bool init_p2p, const std::vector<int> devices) {
  std::vector<platform::Place> places;

  for (size_t i = 0; i < devices.size(); ++i) {
138 139 140
    // In multi process multi gpu mode, we may have gpuid = 7
    // but count = 1.
    if (devices[i] < 0) {
141 142 143
      LOG(WARNING) << "Invalid devices id.";
      continue;
    }
144

145 146 147 148 149 150 151
    places.emplace_back(platform::CUDAPlace(devices[i]));
  }
  if (init_p2p) {
    InitP2P(devices);
  }
  places.emplace_back(platform::CPUPlace());
  platform::DeviceContextPool::Init(places);
152
  platform::DeviceTemporaryAllocator::Init();
Q
qingqing01 已提交
153

154
#ifndef PADDLE_WITH_MKLDNN
T
tensor-tang 已提交
155
  platform::SetNumThreads(FLAGS_paddle_num_threads);
156
#endif
T
tensor-tang 已提交
157

T
tensor-tang 已提交
158
#if !defined(_WIN32) && !defined(__APPLE__) && !defined(__OSX__)
T
tensor-tang 已提交
159
  if (platform::MayIUse(platform::avx)) {
T
tensor-tang 已提交
160 161 162 163
#ifndef __AVX__
    LOG(WARNING) << "AVX is available, Please re-compile on local machine";
#endif
  }
164 165 166 167 168 169 170 171 172 173

// Throw some informations when CPU instructions mismatch.
#define AVX_GUIDE(compiletime, runtime)                                     \
  LOG(FATAL)                                                                \
      << "This version is compiled on higher instruction(" #compiletime     \
         ") system, you may encounter illegal instruction error running on" \
         " your local CPU machine. Please reinstall the " #runtime          \
         " version or compile from source code."

#ifdef __AVX512F__
T
tensor-tang 已提交
174 175
  if (!platform::MayIUse(platform::avx512f)) {
    if (platform::MayIUse(platform::avx2)) {
176
      AVX_GUIDE(AVX512, AVX2);
T
tensor-tang 已提交
177
    } else if (platform::MayIUse(platform::avx)) {
178 179 180 181 182
      AVX_GUIDE(AVX512, AVX);
    } else {
      AVX_GUIDE(AVX512, NonAVX);
    }
  }
T
tensor-tang 已提交
183
#endif
184 185

#ifdef __AVX2__
T
tensor-tang 已提交
186 187
  if (!platform::MayIUse(platform::avx2)) {
    if (platform::MayIUse(platform::avx)) {
188 189 190 191
      AVX_GUIDE(AVX2, AVX);
    } else {
      AVX_GUIDE(AVX2, NonAVX);
    }
T
tensor-tang 已提交
192 193
  }
#endif
194 195

#ifdef __AVX__
T
tensor-tang 已提交
196
  if (!platform::MayIUse(platform::avx)) {
197
    AVX_GUIDE(AVX, NonAVX);
T
tensor-tang 已提交
198
  }
199 200
#endif
#undef AVX_GUIDE
T
tensor-tang 已提交
201 202

#endif
203 204
}

Y
Yang Yu 已提交
205
void InitGLOG(const std::string &prog_name) {
Y
Yang Yu 已提交
206 207 208
  // glog will not hold the ARGV[0] inside.
  // Use strdup to alloc a new string.
  google::InitGoogleLogging(strdup(prog_name.c_str()));
P
peizhilin 已提交
209
#ifndef _WIN32
Y
Yang Yu 已提交
210
  google::InstallFailureSignalHandler();
P
peizhilin 已提交
211
#endif
Y
Yang Yu 已提交
212 213
}

G
gongweibao 已提交
214
#if defined(PADDLE_WITH_DGC)
215 216 217 218 219 220 221 222 223
void InitDGC() {
  std::call_once(dgc_init_flag, []() {
    PADDLE_ENFORCE(paddle::communication::dgc::dynloadNcclLib());
  });
}
#else
void InitDGC() {}
#endif

D
dzhwinter 已提交
224 225
}  // namespace framework
}  // namespace paddle