reduce_function.h 46.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17
// CUDA, XPU and HIP use same api
Y
YuanRisheng 已提交
18
#if defined(__NVCC__) || defined(__HIPCC__) || defined(__xpu__)
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

#include <algorithm>
#include <cmath>
#include <numeric>
#include <set>
#include <vector>

#ifdef __NVCC__
#include "cub/cub.cuh"
#endif

#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif

35
#ifndef PADDLE_WITH_XPU_KP
36
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
37
#include "paddle/fluid/platform/device/gpu/gpu_launch_config.h"
38 39
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
40 41
#endif

42 43 44 45 46 47 48 49 50 51 52
#include "paddle/phi/kernels/cast_kernel.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/elementwise_base.h"
#include "paddle/phi/kernels/primitive/kernel_primitives.h"
#include "paddle/utils/string/string_helper.h"

// Reduce split or not, Whether to use ReduceHigherDim
#define REDUCE_SPLIT_BOUNDARY 512
#define REDUCE_VEC_SIZE 4

namespace kps = phi::kps;
53 54 55
#ifdef PADDLE_WITH_XPU_KP
using dim3 = phi::kps::dim3;
#endif
Y
YuanRisheng 已提交
56 57 58 59 60 61 62 63 64

#endif

#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/utils/array.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
#include "paddle/phi/kernels/funcs/math_function.h"
65 66 67
namespace phi {
namespace funcs {

Y
YuanRisheng 已提交
68
#if defined(__NVCC__) || defined(__HIPCC__) || defined(__xpu__)
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
namespace details {

static inline int GetLastPow2(int n) {
  n |= (n >> 1);
  n |= (n >> 2);
  n |= (n >> 4);
  n |= (n >> 8);
  n |= (n >> 16);
  return std::max(1, n - (n >> 1));
}

static inline int64_t AlignUp(int64_t a, int64_t b) { return (a + b - 1) / b; }

// get strides of x_dim, reduce_dim and left_dim for reduceLastDim and reduceAny
static inline std::vector<int> GetDimStrides(const std::vector<int>& dims,
                                             const std::vector<int>& idx) {
  int n = static_cast<int>(idx.size());
  if (n == 0) return std::vector<int>();
  std::vector<int> strides(n);
  strides.back() = 1;
  for (int i = n - 2; i >= 0; --i) {
    strides[i] = strides[i + 1] * dims[idx[i + 1]];
  }
  return strides;
}

95
#ifndef PADDLE_WITH_XPU_KP
96 97 98 99 100 101
// get blockDim for reduceLastDim and reduceAny
static inline int GetBlockDim(int block_dim) {
  return block_dim >= kps::details::kReduceMaxThread
             ? kps::details::kReduceMaxThread
             : GetLastPow2(block_dim);
}
102
#endif
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194

// check reduce rand is valid
static inline void CheckReduceRank(int reduce_rank, int rank) {
  if (rank % 2 == 0) {
    PADDLE_ENFORCE_EQ(reduce_rank,
                      rank / 2,
                      phi::errors::InvalidArgument(
                          "ReduceOp: invalid reduce rank. When rank = %d, "
                          "reduce_rank must be %d, but got %d.",
                          rank,
                          rank / 2,
                          reduce_rank));
  } else {
    auto lower_rank = (rank - 1) / 2;
    auto upper_rank = (rank + 1) / 2;
    PADDLE_ENFORCE_EQ(
        reduce_rank == lower_rank || reduce_rank == upper_rank,
        true,
        phi::errors::InvalidArgument(
            "ReduceOp: invalid reduce rank. When rank = %d, reduce_rank "
            "must be %d or %d, but got %d.",
            rank,
            lower_rank,
            upper_rank,
            reduce_rank));
  }
}

// convert dims from vector to array
template <typename T, size_t ElementCount, typename VectorLikeType>
static inline phi::Array<T, ElementCount> VectorToArray(
    const VectorLikeType& vec) {
  PADDLE_ENFORCE_LE(
      vec.size(),
      ElementCount,
      phi::errors::InvalidArgument("Cub reduce Array: size not match. Received "
                                   "vec.size() %d > ElementCount %d.",
                                   vec.size(),
                                   ElementCount));
  size_t n = static_cast<size_t>(vec.size());
  phi::Array<T, ElementCount> ret;
  for (size_t i = 0; i < n; ++i) {
    ret[i] = vec[i];
  }
  return ret;
}

static inline std::vector<int> GetReduceDim(const std::vector<int64_t>& dims,
                                            int dim_size,
                                            bool reduce_all) {
  std::vector<int> reduce_dims;
  if (reduce_all) {
    reduce_dims.resize(dim_size);
    int reduce_size = reduce_dims.size();
    for (int i = 0; i < reduce_size; ++i) {
      reduce_dims[i] = i;
    }
  } else {
    for (auto e : dims) {
      PADDLE_ENFORCE_LT(e,
                        dim_size,
                        phi::errors::InvalidArgument(
                            "ReduceOp: invalid axis, when x_dims is %d, "
                            "axis[i] should less than x_dims, but got %d.",
                            dim_size,
                            e));
      reduce_dims.push_back(e >= 0 ? e : e + dim_size);
    }
  }
  return reduce_dims;
}

}  // namespace details

constexpr int kMaxRank = phi::DDim::kMaxRank;

enum ReduceType {
  kReduceLastDim = 0x01,    // when reduce_dim[0] == x_dim.size() - 1;
  kReduceHigherDim = 0x02,  // ReduceFirstDim or reduceSecondDim
  kReduceAny = 0x03,        // when reduce_dim.size() > 1
};

struct IndexCalculator {
  IndexCalculator(int dim,
                  const std::vector<int>& cal_dims,
                  const std::vector<int>& cal_strides,
                  const std::vector<int>& full_strides)
      : dim(dim) {
    dims = details::VectorToArray<int, kMaxRank>(cal_dims);
    strides = details::VectorToArray<int, kMaxRank>(full_strides);
    reduce_strides = details::VectorToArray<int, kMaxRank>(cal_strides);
#ifndef PADDLE_WITH_XPU_KP
195
    std::vector<kps::details::FastDivMod> cal_divmoders;
196 197
    // fast divmod
    for (auto i : cal_strides) {
198
      cal_divmoders.push_back(kps::details::FastDivMod(i));
199
    }
200
    divmoders = details::VectorToArray<kps::details::FastDivMod, kMaxRank>(
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
        cal_divmoders);
#endif
  }

  __device__ inline int operator()(int offset) const {
#ifdef PADDLE_WITH_XPU_KP
    int index = 0;
#pragma unroll
    for (int i = 0; i < kMaxRank; ++i) {
      if (i == dim) {
        break;
      }
      index += (offset / reduce_strides[i]) * strides[dims[i]];
      offset = offset % reduce_strides[i];
    }
    return index;
#else
    int index = 0;
#pragma unroll
    for (int i = 0; i < kMaxRank; ++i) {
      if (i == dim) {
        break;
      }
      auto divmod = divmoders[i].Divmod(offset);
      index += (divmod.val[0] * strides[dims[i]]);
      offset = divmod.val[1];
    }
    return index;
#endif
  }

  int dim;
  phi::Array<int, kMaxRank> dims;
  phi::Array<int, kMaxRank> strides;
  phi::Array<int, kMaxRank> reduce_strides;
236
#ifndef PADDLE_WITH_XPU_KP
237
  phi::Array<kps::details::FastDivMod, kMaxRank> divmoders;
238 239 240 241 242 243
#endif
};

template <bool ReduceLastDim = false>
struct ReduceIndexMapping {
  const kps::DimConfig dim;
244 245 246
  int loop_size;
  HOSTDEVICE ReduceIndexMapping(const kps::DimConfig& dims, int max_loop = 1)
      : dim(dims), loop_size(max_loop) {}
247

248
#ifdef PADDLE_WITH_XPU_KP
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
  __device__ __forceinline__ int BlockIdX() {
    if (ReduceLastDim) {
      return (cluster_id() / dim.split_num_x % dim.split_num_y);
    } else {
      return cluster_id() % dim.split_num_x;
    }
  }

  __device__ __forceinline__ int BlockIdY() {
    if (ReduceLastDim) {
      return (cluster_id() % dim.split_num_x);
    } else {
      return (cluster_id() / dim.split_num_x % dim.split_num_y);
    }
  }

265
  __device__ __forceinline__ int BlockDimX() { return dim.deal_size_x; }
266

267
  __device__ __forceinline__ int BlockDimY() { return 1; }
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

  __device__ __forceinline__ int GridDimX() {
    if (ReduceLastDim) {
      return dim.split_num_y;
    } else {
      return dim.split_num_x;
    }
  }

  __device__ __forceinline__ int GridDimY() {
    if (ReduceLastDim) {
      return dim.split_num_x;
    } else {
      return dim.split_num_y;
    }
  }

  __device__ __forceinline__ int GetLoopSize() {
286
    if ((!ReduceLastDim) && (loop_size == 1)) {
287
      return dim.deal_size_x;
288 289
    } else {
      return loop_size;
290
    }
291
  }
292
#else
293 294 295 296 297 298 299 300 301 302 303 304 305
  __device__ __forceinline__ int BlockIdX() { return blockIdx.x; }

  __device__ __forceinline__ int BlockIdY() { return blockIdx.y; }

  __device__ __forceinline__ int BlockDimX() { return blockDim.x; }

  __device__ __forceinline__ int BlockDimY() { return blockDim.y; }

  __device__ __forceinline__ int GridDimX() { return gridDim.x; }

  __device__ __forceinline__ int GridDimY() { return gridDim.y; }

  __device__ int GetLoopSize() { return 1; }
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
#endif
};

// when reduce_type == kReduceLastDim this struct will be used
// for higher performance
struct OneDimIndexCal {
  explicit OneDimIndexCal(int num) : stride(num) {}

  __device__ inline int operator()(int index) const { return index * stride; }
  int stride;
};

// reduce config
template <typename Ty>
struct ReduceConfig {
  ReduceConfig(const std::vector<int>& origin_reduce_dims,
               const std::vector<int>& origin_x_dim)
      : reduce_dims_origin(origin_reduce_dims), x_dim(origin_x_dim) {}

  // get the parameters of reduceKernel
326
  void Run(const KPDevice& dev_ctx) {
327 328 329 330 331 332 333 334 335 336 337
    // step1: update the reduce_dim left_dim and x_dim
    SetReduceDim();

    // step2: get the strides of dim for reduceAny and reduceLastDim
    SetStrides();

    // step3: get the type of reduce
    SetReduceType();

    // step4: set the block and grid for launch kernel
    SetBlockDim();
338
#ifndef PADDLE_WITH_XPU_KP
339
    // step5: limit the grid to prevent thead overflow
340
    paddle::platform::LimitGridDim(dev_ctx, &grid);
341
#endif
342 343 344 345
  }

  // when should_reduce_again is true, we need malloc temp space for temp data
  void SetOutputData(Ty* y_data,
346
                     const KPDevice& dev_ctx,
347 348
                     phi::DenseTensor* tmp) {
    if (should_reduce_again) {
349
      tmp->Resize(phi::make_ddim(
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
          {static_cast<int64_t>(left_num * grid.z * grid.y * sizeof(Ty))}));
      output_data = dev_ctx.Alloc<Ty>(tmp);
    } else {
      output_data = y_data;
    }
  }

 private:
  // set reduce_dim, left_dim and update x_dim
  // eg: x_dim = [2, 4, 6] origin_reduce_dims = [0, 1]
  //     --SetReduceDim--> x_dim = [8,6], reduce_dim = [0], left_dim = [1]
  void SetReduceDim() {
    std::set<int> reduce_set;
    for (auto e : reduce_dims_origin) {
      auto pos = e >= 0 ? e : e + x_dim.size();
      reduce_set.insert(pos);
    }

    std::vector<int> reduce_dim_temp(reduce_set.begin(), reduce_set.end());
    std::sort(reduce_dim_temp.begin(), reduce_dim_temp.end());

    // update reduce_dim and x_dim
    std::vector<int> x_new_dim;

    reduce_dim.push_back(reduce_dim_temp[0]);
    x_new_dim.push_back(x_dim[0]);

    int idx_reduce = 1;
    int num = 0;

    if (reduce_dim_temp.size() > 1) {
      for (int i = 1; i < x_dim.size(); i++) {
        if ((idx_reduce < reduce_dim_temp.size()) &&
            (i == reduce_dim_temp[idx_reduce])) {
          int result =
              reduce_dim_temp[idx_reduce] - reduce_dim[reduce_dim.size() - 1];
          bool is_equal = ((result - num) == 1);
          if (is_equal) {
            x_new_dim[x_new_dim.size() - 1] *= x_dim[i];
            num++;
          } else {
            reduce_dim.push_back(reduce_dim_temp[idx_reduce] - num);
            x_new_dim.push_back(x_dim[i]);
          }
          idx_reduce++;
        } else {
          x_new_dim.push_back(x_dim[i]);
        }
      }
    } else {
      x_new_dim = x_dim;
    }

    // update x_dim
    x_dim = x_new_dim;
    std::vector<int>().swap(x_new_dim);

    std::vector<int> reduce_dim_new;
    int is_reduced = 0;
    for (auto e : reduce_dim) {
      is_reduced |= 1 << e;
    }

    std::vector<int>().swap(reduce_dim);

    for (int i = 0; i < x_dim.size(); i++) {
      if ((i == 0) || (((is_reduced >> i) ^ (is_reduced >> (i - 1))) & 1)) {
        x_new_dim.push_back(x_dim[i]);
        if ((is_reduced >> i) & 1)
          reduce_dim_new.push_back(x_new_dim.size() - 1);
      } else {
        x_new_dim[x_new_dim.size() - 1] *= x_dim[i];
      }
    }

    x_dim = x_new_dim;
    reduce_dim = reduce_dim_new;

    int x_rank = static_cast<int>(x_dim.size());
    std::set<int> left_set;

    for (int i = 0; i < x_rank; ++i) {
      left_set.insert(i);
    }

    for (auto e : reduce_dim) {
      left_set.erase(e);
    }

    left_dim.assign(left_set.begin(), left_set.end());

    // if the last dim gets involved in reduction
    reduce_last_dim = (reduce_dim.back() == x_dim.size() - 1);
  }

  // set x_strides, reduce_strides, left_strides for reduceLastDim and reduceAny
  // eg: x_dim = [8, 6], reduce_dim = [0], left_dim = [1]
  //     --SetStrides--> x_strides= [6,1], reduce_strides = [1],
  //     left_strides = [1]
  void SetStrides() {
    std::vector<int> idx_dim;
    for (int i = 0; i < x_dim.size(); i++) {
      idx_dim.push_back(i);
    }

    x_strides = details::GetDimStrides(x_dim, idx_dim);
    reduce_strides = details::GetDimStrides(x_dim, reduce_dim);
    left_strides = details::GetDimStrides(x_dim, left_dim);
    reduce_num = reduce_strides[0] * x_dim[reduce_dim[0]];

    left_num = 1;
    if (left_dim.size()) {
      left_num = left_strides[0] * x_dim[left_dim[0]];
    }
  }

  // get the reduceType
  // eg: x_dim = [8, 6] reduce_dim = [0] --> ReduceHigherDim -->reduceFirstDim
  //     x_dim = [8, 6] reduce_dim = [1] --> reduceLastDim
  //     x_dim = [8] reduce_dim = [0] --> reduceAll
  //     x_dim = [8, 6, 4, 2] reduce_dim = [0, 2] --> reduceAny
  void SetReduceType() {
    int rank = x_dim.size();
    int reduce_rank = reduce_dim.size();
#ifdef PADDLE_WITH_XPU_KP
475
    bool not_higher = x_dim[0] > 1;
476
#else
477 478 479
    int device_id = paddle::platform::GetCurrentDeviceId();
    int max_grid_z = phi::backends::gpu::GetGpuMaxGridDimSize(device_id)[2];
    bool not_higher = x_dim[0] >= max_grid_z;
480
#endif
481
    if (reduce_last_dim && (reduce_rank == 1)) {
N
niuliling123 已提交
482 483 484
#ifdef PADDLE_WITH_XPU_KP
      reduce_type = static_cast<int>(ReduceType::kReduceAny);
#else
485
      reduce_type = static_cast<int>(ReduceType::kReduceLastDim);
N
niuliling123 已提交
486
#endif
487
    } else if (reduce_rank == 1) {
488 489
      reduce_type = static_cast<int>(ReduceType::kReduceHigherDim);
      if (rank == 3 && not_higher) {
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
        reduce_type = static_cast<int>(ReduceType::kReduceAny);
      }
    } else {
      reduce_type = static_cast<int>(ReduceType::kReduceAny);
    }
  }

#ifndef PADDLE_WITH_XPU_KP
  void SetBlockDimForReduceAny(dim3* block_dim, dim3* grid_dim) {
    constexpr int min_reduce_num_per_thread = 16;
    constexpr int max_reduce_num_per_thread = 256;
    constexpr int max_num_threads = kps::details::kReduceMaxThread;

    // set block size.
    // 1. If reduce_last_dim == true, all the threads whose threadIdx.y are same
    //    will process the reduction for one output.
    //    The number of output for one block is blockDim.y;
    // 2. If reduce_last_dim == false, different threadIdx.x will process
    //    different reduction and gets the output separately. If it is
    //    necessary, it should reduce in block y.
    //    The number of output for one block is blockDim.x;
    int block_x, block_y;
    int grid_num, reduce_num_per_thread;
    if (reduce_last_dim) {
      block_x = details::GetBlockDim(reduce_num);
      block_y = details::GetBlockDim(left_num);
      block_dim->x = block_x;
      block_dim->y =
          std::min(block_y, static_cast<int>(max_num_threads / block_dim->x));
      grid_num = details::AlignUp(left_num, block_dim->y);
      reduce_num_per_thread = details::AlignUp(reduce_num, block_dim->x);
    } else {
      block_x = details::GetBlockDim(left_num);
      block_y = details::GetBlockDim(reduce_num);
      block_dim->x = std::min(block_x, 32);
      block_dim->y =
          std::min(block_y, static_cast<int>(max_num_threads / block_dim->x));
      block_dim->x =
          std::min(block_x, static_cast<int>(max_num_threads / block_dim->y));
      grid_num = details::AlignUp(left_num, block_dim->x);
      reduce_num_per_thread = details::AlignUp(reduce_num, block_dim->y);
    }
    int device_id = paddle::platform::GetCurrentDeviceId();
    int max_mp = paddle::platform::GetGPUMultiProcessors(device_id);
    int max_threads_per_mp =
        paddle::platform::GetGPUMaxThreadsPerMultiProcessor(device_id);
    int max_threads = max_threads_per_mp * max_mp;
    int num_threads = block_dim->x * block_dim->y;
    int max_num_blocks = max_threads / num_threads;

    // set grid size.
    // Whether to set grid.y larger than 1, there are 3 following rules:
    // 1. The number that each thread process should no less than
    //    min_reduce_num_per_threadbut no more than max_reduce_num_per_thread;
    // 2. It should maximize the utilization of SM.
    // So we choose the minimum between input_split_num_1 and input_split_num_3
    // to make each thread process as mush data as possible. Meanwhile,
    // the number cannot be larger than max_reduce_num_per_thread, so we
    // choose the maximum between the result above and input_split_num_2.
    int input_split_num_1 =
        details::AlignUp(reduce_num_per_thread, min_reduce_num_per_thread);
    int input_split_num_2 =
        details::AlignUp(reduce_num_per_thread, max_reduce_num_per_thread);
    int input_split_num_3 = details::AlignUp(max_num_blocks, grid_num);

    grid_dim->x = grid_num;
    grid_dim->y = std::max(std::min(input_split_num_1, input_split_num_3),
                           input_split_num_2);
    // if grid.y > 1, we need launch reduce kernel again.
    if (grid_dim->y > 1) {
      should_reduce_again = true;
    }
  }

  // set block and grid for launch kernel
  // for ReduceHigherDim: if block is enough -> splite reduce_num
  //                     else init block(32, 1) grid(block_num, 1)
  // for others: block(block_num, 1) , grid(left_num, 1)
  void SetBlockDimForHigher(dim3* block_dim, dim3* grid_dim) {
    int last_dim_num = x_dim.back();
    // update left_num
    int grid_z = left_num / last_dim_num;
    left_num = last_dim_num;
    grid_dim->z = grid_z;
    int device_id = paddle::platform::GetCurrentDeviceId();
    int max_mp = paddle::platform::GetGPUMultiProcessors(device_id);
    int max_threads_per_mp =
        paddle::platform::GetGPUMaxThreadsPerMultiProcessor(device_id);
    int max_threads = max_threads_per_mp * max_mp;
    // init
    int num_block = (max_threads / left_num);
    block_dim->x = details::GetBlockDim(left_num);
    grid_dim->x = details::AlignUp(left_num, block_dim->x);
    blocking_size = reduce_num;

    if (num_block > 1 && reduce_num >= REDUCE_SPLIT_BOUNDARY) {
      blocking_size = details::GetLastPow2(reduce_num / num_block);
      if (blocking_size <= 1) {
        blocking_size = details::GetLastPow2(sqrt(reduce_num));
      } else if (blocking_size * 2 < reduce_num) {
        blocking_size *= 2;
      }
      should_reduce_again = true;
      grid_dim->y = details::AlignUp(reduce_num, blocking_size);
    }
  }
#endif

  void SetBlockDim() {
    // init
    should_reduce_again = false;
N
niuliling123 已提交
601
    dim3 block_dim(1, 1, 1);
602 603
    dim3 grid_dim(left_num, 1, 1);
    blocking_size = reduce_num;
604

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
#ifdef PADDLE_WITH_XPU_KP
    if (reduce_last_dim) {
      block_dim.x = 64;
      block_dim.y = reduce_num;
      grid_dim.x = 1;
      grid_dim.y = 8;
    } else {
      block_dim.x = 64;
      block_dim.y = left_num;
      grid_dim.x = 8;
      grid_dim.y = 1;
    }
#else
    if (reduce_type == ReduceType::kReduceHigherDim) {
      SetBlockDimForHigher(&block_dim, &grid_dim);
    } else {
      SetBlockDimForReduceAny(&block_dim, &grid_dim);
    }
#endif

    block = block_dim;
    grid = grid_dim;
  }

 public:
  std::vector<int> reduce_dims_origin;
  std::vector<int> reduce_dim;
  std::vector<int> x_dim;
  std::vector<int> left_dim;
  std::vector<int> x_strides;
  std::vector<int> left_strides;
  std::vector<int> reduce_strides;

  int reduce_type;
  int reduce_num;
  int left_num;
  int blocking_size;
  bool should_reduce_again;
  bool reduce_last_dim;
  Ty* output_data;
  dim3 block;
  dim3 grid;
};

// when reduce_dim.size() == 1 and reduce_dim[0] == x_dim.size() - 1, or
// when reduce_dim.size() != 1 and reduce_dim.size() != x_dim.size(), this
// function will be used
template <typename Tx,
          typename Ty,
          typename MPType,
          typename ReduceOp,
          typename TransformOp,
          typename Calculator>
__global__ void ReduceAnyKernel(const Tx* x,
                                Ty* y,
                                ReduceOp reducer,
                                TransformOp transformer,
                                MPType init,
                                int reduce_num,
                                int left_num,
                                bool reduce_last_dim,
                                const Calculator reduce_index_calculator,
                                const Calculator left_index_calculator,
668 669
                                const kps::DimConfig dim,
                                bool is_mean) {
670 671 672 673 674 675 676 677 678
  int input_idx, left_idx, stride;
  int block_size = 0;
  bool need_store = true;
  int loop_left = 0;
  int tid = 0;
  // the last dim gets involved in reduction
  int store_offset = 0;
  int stride_left = 0;
  if (reduce_last_dim) {
679
    auto block = ReduceIndexMapping<true>(dim, left_num);
680 681 682 683 684 685 686 687 688 689
    input_idx = block.BlockIdY() * block.BlockDimX();
    left_idx = block.BlockIdX() * block.BlockDimY() + THREAD_ID_Y;
    stride = block.GridDimY() * block.BlockDimX();
    block_size = block.BlockDimX();
    need_store = (THREAD_ID_X == 0) && (left_idx < left_num);
    store_offset = block.BlockIdY() * left_num + left_idx;
    loop_left = min(block.GetLoopSize(), left_num - left_idx);
    stride_left = 1;
    tid = THREAD_ID_X;
  } else {
690
    auto block = ReduceIndexMapping<false>(dim, left_num);
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
    input_idx = block.BlockIdY() * block.BlockDimY();
    left_idx = block.BlockIdX() * block.BlockDimX() + THREAD_ID_X;
    stride = block.GridDimY() * block.BlockDimY();
    block_size = block.BlockDimY();
    need_store = (THREAD_ID_Y == 0) && (left_idx < left_num);
    loop_left = min(block.GetLoopSize(), left_num - left_idx);
    stride_left = block.BlockDimX() * block.GridDimX();
    store_offset = block.BlockIdY() * left_num + left_idx;
    tid = THREAD_ID_Y;
  }
  // calculate the offset, means the addr where each thread really start.
  // 1. reduce for each thread
  MPType input_compute[REDUCE_VEC_SIZE];
  Tx input_reg[REDUCE_VEC_SIZE];
  int input_idx_tmp = input_idx;
  for (int i = 0; i < loop_left; i += stride_left) {
    int input_offset = left_index_calculator(left_idx + i);
    const _ptr_ Tx* input = x + input_offset;
    MPType reduce_var = init;
    // load REDUCE_VEC_SIZE data once, and then compute
    int bound = reduce_num - (REDUCE_VEC_SIZE - 1) * stride;
    input_idx = input_idx_tmp;
    for (; input_idx + block_size < bound;
         input_idx += REDUCE_VEC_SIZE * stride) {
      kps::ReadDataReduce<Tx,
                          Tx,
                          1,
                          REDUCE_VEC_SIZE,
                          1,
                          Calculator,
                          kps::IdentityFunctor<Tx>,
                          false>(&input_reg[0],
                                 input,
                                 input_idx,
                                 reduce_index_calculator,
                                 1,
                                 reduce_num,
                                 1,
                                 stride,
                                 kps::IdentityFunctor<Tx>(),
                                 reduce_last_dim);
732
      kps::ElementwiseUnary<Tx, MPType, REDUCE_VEC_SIZE, 1, TransformOp>(
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
          &input_compute[0], &input_reg[0], transformer);
      kps::Reduce<MPType,
                  REDUCE_VEC_SIZE,
                  1,
                  ReduceOp,
                  kps::details::ReduceMode::kLocalMode>(
          &reduce_var, &input_compute[0], reducer, reduce_last_dim);
    }

    kps::Init<MPType, REDUCE_VEC_SIZE>(&input_compute[0], init);
    kps::ReadDataReduce<Tx,
                        MPType,
                        1,
                        REDUCE_VEC_SIZE,
                        1,
                        Calculator,
                        TransformOp,
                        true>(&input_compute[0],
                              input,
                              input_idx,
                              reduce_index_calculator,
                              1,
                              reduce_num - input_idx,
                              1,
                              stride,
                              transformer,
                              reduce_last_dim);
    kps::Reduce<MPType,
                REDUCE_VEC_SIZE,
                1,
                ReduceOp,
                kps::details::ReduceMode::kLocalMode>(
        &reduce_var, &input_compute[0], reducer, reduce_last_dim);

767
    kps::Reduce<MPType, 1, 1, ReduceOp, kps::details::kGlobalMode>(
768
        &reduce_var, &reduce_var, reducer, reduce_last_dim);
769 770 771
    if (is_mean) {
      reduce_var = reduce_var / static_cast<MPType>(reduce_num);
    }
772 773 774
    Ty result = static_cast<Ty>(reduce_var);
    kps::details::WriteData<Ty>(
        y + store_offset + i, &result, static_cast<int>(need_store));
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
  }
}

template <typename Tx,
          typename Ty,
          typename MPType,
          typename ReduceOp,
          typename TransformOp>
__global__ void ReduceHigherDimKernel(const Tx* x,
                                      Ty* y,
                                      ReduceOp reducer,
                                      TransformOp transformer,
                                      MPType init,
                                      int reduce_num,
                                      int left_num,
                                      int blocking_size,
791 792 793
                                      const kps::DimConfig dim,
                                      int mean_div,
                                      bool is_mean) {
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
  // when reduce_dim.size() == 1 and reduce_dim[0] != x_dim.size() - 1, this
  // function will be used
  auto block = ReduceIndexMapping<false>(dim);
  int idy = block.BlockIdY() * blocking_size;
  int idx = block.BlockIdX() * block.BlockDimX();
  int idz = BLOCK_ID_Z * left_num;
  int stride = dim.split_num_x * dim.deal_size_x;
  int size = left_num - dim.rem_x;
  int loop_size = min(reduce_num - idy, blocking_size);
  int store_offset = block.BlockIdY() * left_num + idz * block.GridDimY();
  int block_offset = idy * left_num + idz * reduce_num;
  const _ptr_ Tx* input = x + block_offset;
  Tx reduce_input;
  for (; idx < size; idx += stride) {
    MPType reduce_var = init;
    MPType reduce_compute = init;
    for (int loop_idx = 0; loop_idx < loop_size; ++loop_idx) {
811 812 813 814 815 816 817
      kps::ReadData<Tx, Tx, 1, 1, false>(&reduce_input,
                                         input + loop_idx * left_num + idx,
                                         block.BlockDimX(),
                                         1,
                                         1,
                                         left_num);
      kps::ElementwiseUnary<Tx, MPType, 1, 1, TransformOp>(
818
          &reduce_compute, &reduce_input, transformer);
819
      kps::Reduce<MPType, 1, 1, ReduceOp, kps::details::ReduceMode::kLocalMode>(
820 821
          &reduce_var, &reduce_compute, reducer, false);
    }
822 823 824
    if (is_mean) {
      reduce_var = reduce_var / static_cast<MPType>(mean_div);
    }
825
    Ty result = static_cast<Ty>(reduce_var);
826
    kps::WriteData<Ty, 1, 1, false>(
827 828 829 830 831 832 833
        y + store_offset + idx, &result, block.BlockDimX());
  }

  if (idx < left_num) {
    MPType reduce_var = init;
    MPType reduce_compute = init;
    for (int loop_idx = 0; loop_idx < loop_size; ++loop_idx) {
834 835 836 837 838 839 840
      kps::ReadData<Tx, Tx, 1, 1, true>(&reduce_input,
                                        input + loop_idx * left_num + idx,
                                        dim.rem_x,
                                        1,
                                        1,
                                        left_num);
      kps::ElementwiseUnary<Tx, MPType, 1, 1, TransformOp>(
841
          &reduce_compute, &reduce_input, transformer);
842
      kps::Reduce<MPType, 1, 1, ReduceOp, kps::details::ReduceMode::kLocalMode>(
843 844
          &reduce_var, &reduce_compute, reducer, false);
    }
845 846 847 848

    if (is_mean) {
      reduce_var = reduce_var / static_cast<MPType>(mean_div);
    }
849
    Ty result = static_cast<Ty>(reduce_var);
850
    kps::WriteData<Ty, 1, 1, true>(y + store_offset + idx, &result, dim.rem_x);
851 852 853 854 855 856 857 858 859 860 861 862 863 864
  }
}

template <typename Tx,
          typename Ty,
          typename MPType,
          typename ReduceOp,
          typename TransformOp>
static void LaunchReduceKernel(const Tx* x_data,
                               Ty* y_data,
                               const ReduceOp& reducer,
                               const TransformOp& transform,
                               MPType init,
                               KPStream stream,
865 866
                               ReduceConfig<Ty> config,
                               bool is_mean = false) {
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
  if (config.reduce_type == kReduceLastDim) {
    int stride_reduce = 1;
    int stride_left = config.reduce_num;
    // for higher performance
    auto reduce_index_calculator = OneDimIndexCal(stride_reduce);
    auto left_index_calculator = OneDimIndexCal(stride_left);

    kps::DimConfig dim = kps::DimConfig(config.grid.x,
                                        config.grid.y,
                                        config.grid.z,
                                        config.block.x,
                                        config.block.y,
                                        0);
    dim.SetRem(config.reduce_num % config.block.x, 0, 0);

#ifdef PADDLE_WITH_XPU_KP
883 884
    auto grid_num = 8;
    auto block_num = 64;
885
#else
886 887 888
    auto grid_num = config.grid;
    auto block_num = config.block;
#endif
889 890 891 892 893 894 895 896 897 898 899 900 901 902
    ReduceAnyKernel<Tx, Ty, MPType, ReduceOp, TransformOp, OneDimIndexCal>
        <<<grid_num, block_num, 0, stream>>>(
            x_data,
            config.output_data,
            reducer,
            transform,
            init,
            config.reduce_num,
            config.left_num,
            config.reduce_last_dim,
            reduce_index_calculator,
            left_index_calculator,
            dim,
            is_mean && (!config.should_reduce_again));
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922

  } else {
    int reduce_rank = config.reduce_strides.size();
    int left_rank = config.left_strides.size();
    auto reduce_index_calculator = IndexCalculator(reduce_rank,
                                                   config.reduce_dim,
                                                   config.reduce_strides,
                                                   config.x_strides);
    auto left_index_calculator = IndexCalculator(
        left_rank, config.left_dim, config.left_strides, config.x_strides);

    kps::DimConfig dim = kps::DimConfig(config.grid.x,
                                        config.grid.y,
                                        config.grid.z,
                                        config.block.x,
                                        config.block.y,
                                        0);
    dim.SetRem(config.reduce_num % config.block.x, 0, 0);

#ifdef PADDLE_WITH_XPU_KP
923 924
    auto grid_num = 8;
    auto block_num = 64;
925
#else
926 927 928
    auto grid_num = config.grid;
    auto block_num = config.block;
#endif
929 930 931 932 933 934 935 936 937 938 939 940 941 942
    ReduceAnyKernel<Tx, Ty, MPType, ReduceOp, TransformOp, IndexCalculator>
        <<<grid_num, block_num, 0, stream>>>(
            x_data,
            config.output_data,
            reducer,
            transform,
            init,
            config.reduce_num,
            config.left_num,
            config.reduce_last_dim,
            reduce_index_calculator,
            left_index_calculator,
            dim,
            is_mean && (!config.should_reduce_again));
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
  }

  if (config.should_reduce_again) {
    dim3 block;
    dim3 grid;
    if (config.reduce_last_dim) {
      block = dim3(32, 1, 1);
      grid = dim3(details::AlignUp(config.left_num, 32), 1, 1);
    } else {
      block = dim3(config.block.x, 1, 1);
      grid = dim3(config.grid.x, 1, config.grid.z);
    }

    auto last_index = OneDimIndexCal(1);
    auto first_index = OneDimIndexCal(config.left_num);
    kps::DimConfig dim =
        kps::DimConfig(grid.x, grid.y, grid.z, block.x, config.grid.y, 0);
    dim.SetRem(config.left_num % block.x, 0, 0);
#ifdef PADDLE_WITH_XPU_KP
962 963 964 965 966
    int grid_size = 8;
    int block_size = 64;
#else
    auto grid_size = grid;
    auto block_size = block;
967
#endif
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
    ReduceHigherDimKernel<Ty,
                          Ty,
                          MPType,
                          ReduceOp,
                          kps::IdentityFunctor<Ty, MPType>>
        <<<grid_size, block_size, 0, stream>>>(
            config.output_data,
            y_data,
            reducer,
            kps::IdentityFunctor<Ty, MPType>(),
            init,
            config.grid.y,
            config.left_num,
            config.grid.y,
            dim,
            config.reduce_num,
            is_mean);
985 986 987
  }
}

988
#if !defined(PADDLE_WITH_XPU_KP)
989 990
template <typename Tx,
          typename Ty,
991 992
          template <typename>
          class ReduceOp,
993 994 995 996 997 998 999
          typename TransformOp>
static typename std::enable_if<!std::is_same<Tx, phi::dtype::float16>::value,
                               void>::type
CubTensorReduceImpl(const Tx* x_data,
                    Ty* y_data,
                    const TransformOp& transform,
                    int reduce_num,
1000
                    const KPDevice& dev_ctx,
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
                    KPStream stream) {
  auto reducer = ReduceOp<Ty>();
  cub::TransformInputIterator<Ty, TransformOp, const Tx*> trans_x(x_data,
                                                                  transform);
  size_t temp_storage_bytes = 0;
  cub::DeviceReduce::Reduce(nullptr,
                            temp_storage_bytes,
                            trans_x,
                            y_data,
                            reduce_num,
                            reducer,
                            reducer.initial(),
                            stream);
1014 1015
  phi::DenseTensor tmp = phi::Empty<uint8_t, phi::GPUContext>(
      dev_ctx, {static_cast<int64_t>(temp_storage_bytes)});
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030

  auto* temp_storage = dev_ctx.Alloc<uint8_t>(&tmp);

  cub::DeviceReduce::Reduce(temp_storage,
                            temp_storage_bytes,
                            trans_x,
                            y_data,
                            reduce_num,
                            reducer,
                            reducer.initial(),
                            stream);
}

template <typename Tx,
          typename Ty,
1031 1032
          template <typename>
          class ReduceOp,
1033 1034 1035 1036 1037 1038 1039
          typename TransformOp>
static typename std::enable_if<std::is_same<Tx, phi::dtype::float16>::value,
                               void>::type
CubTensorReduceImpl(const Tx* x_data,
                    Ty* y_data,
                    const TransformOp& transform,
                    int reduce_num,
1040
                    const KPDevice& dev_ctx,
1041 1042 1043 1044
                    KPStream stream) {
  PADDLE_THROW(phi::errors::InvalidArgument(
      "Tx should not be float16 when using cub::DeviceReduce::Reduce()."));
}
1045
#endif  // PADDLE_WITH_XPU_KP
1046 1047 1048

template <typename Tx,
          typename Ty,
1049 1050
          template <typename>
          class ReduceOp,
1051
          typename TransformOp>
1052
void ReduceKernel(const KPDevice& dev_ctx,
1053 1054 1055
                  const phi::DenseTensor& x,
                  phi::DenseTensor* y,
                  const TransformOp& transform,
1056 1057
                  const std::vector<int>& origin_reduce_dims,
                  bool is_mean = false) {
1058 1059 1060
#ifdef PADDLE_WITH_XPU_KP
  auto stream = dev_ctx.x_context()->xpu_stream;
#else
1061
  auto stream = dev_ctx.stream();
1062
#endif
1063 1064 1065
  dev_ctx.Alloc<Ty>(y);

  auto x_dim = phi::vectorize<int>(x.dims());
1066 1067 1068 1069 1070 1071 1072 1073

  if (x_dim.size() == 0) {
    std::vector<const DenseTensor*> inputs = {&x};
    std::vector<DenseTensor*> outputs = {y};
    funcs::ElementwiseKernel<Ty>(dev_ctx, inputs, &outputs, transform);
    return;
  }

1074
  auto config = ReduceConfig<Ty>(origin_reduce_dims, x_dim);
1075
  config.Run(dev_ctx);
1076 1077 1078 1079 1080 1081 1082
  int numel = x.numel();
  // after config.run()
  // SetOutputData for ReduceHigherDim when should_reduce_again is true,
  // temp_output should be stored temp_data in output_data space or stored in
  // y_data;

  phi::DDim tmp_ddim;
1083
  phi::DenseTensor tmp;
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099

  auto x_data = x.data<Tx>();
  auto y_data = y->data<Ty>();

  if (config.reduce_num == 1) {
    std::vector<const DenseTensor*> inputs = {&x};
    std::vector<DenseTensor*> outputs = {y};
    funcs::ElementwiseKernel<Ty>(dev_ctx, inputs, &outputs, transform);
    return;
  }

  config.SetOutputData(y_data, dev_ctx, &tmp);
  constexpr bool kIsTxFP16 = std::is_same<Tx, phi::dtype::float16>::value;
  bool use_cub_reduce = config.reduce_num == numel && !kIsTxFP16;
#ifndef PADDLE_WITH_XPU_KP
  if (use_cub_reduce) {
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
    if (is_mean) {
      using Div = kps::DivideFunctor<Tx>;
      CubTensorReduceImpl<Tx, Ty, ReduceOp, Div>(x_data,
                                                 y_data,
                                                 Div(config.reduce_num),
                                                 config.reduce_num,
                                                 dev_ctx,
                                                 stream);
    } else {
      CubTensorReduceImpl<Tx, Ty, ReduceOp, TransformOp>(
          x_data, y_data, transform, config.reduce_num, dev_ctx, stream);
    }
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
    return;
  }
#endif

  using MPType = typename kps::details::MPTypeTrait<Ty>::Type;
  auto reducer = ReduceOp<MPType>();
  // launch ReduceHigherDimKernel
  // when reduce_dim.size() == 1 and reduce_dim[0] != x_dim.size() - 1, this
  // function will be used
  // eg: x_dim = {nz, ny, nx}, nx != 1, axis can be 0 or 1
  //     if axis = 1 then grid.z = nz, grid.y = ny / block_size, grid.x = nx /
  //     32
  //     else grid.z = 1, grid.y = ny / block_size, grid.x = nx /32
  if (config.reduce_type == ReduceType::kReduceHigherDim) {
    kps::DimConfig dim = kps::DimConfig(config.grid.x,
                                        config.grid.y,
                                        config.grid.z,
                                        config.block.x,
                                        config.blocking_size,
                                        0);
    dim.SetRem(config.left_num % config.block.x,
               config.reduce_num % config.blocking_size,
               0);

#ifdef PADDLE_WITH_XPU_KP
1137 1138 1139 1140 1141 1142
    auto grid_num = 8;
    auto block_num = 64;
#else
    auto grid_num = config.grid;
    auto block_num = config.block;
#endif
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
    ReduceHigherDimKernel<Tx, Ty, MPType, ReduceOp<MPType>, TransformOp>
        <<<grid_num, block_num, 0, stream>>>(
            x_data,
            config.output_data,
            reducer,
            transform,
            reducer.initial(),
            config.reduce_num,
            config.left_num,
            config.blocking_size,
            dim,
            config.reduce_num,
            is_mean && (!config.should_reduce_again));
1156 1157 1158 1159 1160 1161 1162 1163 1164

    if (config.should_reduce_again) {
      dim3 block = dim3(config.block.x, 1, 1);
      dim3 grid = dim3(config.grid.x, 1, config.grid.z);
      kps::DimConfig dim2 =
          kps::DimConfig(grid.x, grid.y, grid.z, block.x, config.grid.y, 0);
      dim2.SetRem(config.left_num % config.block.x, 0, 0);

#ifdef PADDLE_WITH_XPU_KP
1165 1166 1167 1168 1169
      int grid_size = 8;
      int block_size = 64;
#else
      auto grid_size = grid;
      auto block_size = block;
1170
#endif
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
      ReduceHigherDimKernel<Ty,
                            Ty,
                            MPType,
                            ReduceOp<MPType>,
                            kps::IdentityFunctor<Ty, MPType>>
          <<<grid_size, block_size, 0, stream>>>(
              config.output_data,
              y_data,
              reducer,
              kps::IdentityFunctor<Ty, MPType>(config.grid.y),
              reducer.initial(),
              config.grid.y,
              config.left_num,
              config.grid.y,
              dim2,
              config.reduce_num,
              is_mean);
1188 1189 1190 1191 1192 1193 1194 1195
    }
    return;
  }

  // when reduce_dim.size() == 1 and reduce_dim[0] == x_dim.size() - 1, or
  // when reduce_dim.size() != 1 and reduce_dim.size() != x_dim.size(), this
  // function will be used
  LaunchReduceKernel<Tx, Ty, MPType, ReduceOp<MPType>, TransformOp>(
1196 1197 1198 1199 1200 1201 1202 1203
      x_data,
      y_data,
      reducer,
      transform,
      reducer.initial(),
      stream,
      config,
      is_mean);
1204 1205
}

Y
YuanRisheng 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
#endif

template <typename DeviceContext,
          typename T,
          size_t D,
          size_t R_D,
          typename Functor>
void ReduceFunctor(const DeviceContext& context,
                   const phi::DenseTensor& input,
                   phi::DenseTensor* output,
                   const std::vector<int64_t>& dims,
                   bool keep_dim) {
  auto x = EigenTensor<T, D>::From(input);
  auto x_rank = static_cast<int>(x.dimensions().size());
  auto reduce_dim = Eigen::array<int, R_D>();
  std::vector<int64_t> dims_ref = dims;
  for (size_t i = 0; i < dims_ref.size(); ++i) {
    if (dims_ref[i] < 0) dims_ref[i] = x_rank + dims_ref[i];
    reduce_dim[i] = dims_ref[i];
  }
  // construct the squeezed output tensor
  DDim out_dims = output->dims();
  if (keep_dim && x_rank > 1) {
    const int kDelFlag = -2;
    auto dims_vector = phi::vectorize(out_dims);
    for (size_t i = 0; i < dims_ref.size(); ++i) {
      dims_vector[dims_ref[i]] = kDelFlag;
    }
    dims_vector.erase(remove(dims_vector.begin(), dims_vector.end(), kDelFlag),
                      dims_vector.end());
    out_dims = phi::make_ddim(dims_vector);
  }
  auto& place = *context.eigen_device();
  Functor functor;

  if (D == 1) {
    auto out = EigenScalar<T>::From(*output);
    functor(place, &x, &out, reduce_dim);
  } else {
    auto out = EigenTensor<T, (D - R_D)>::From(*output, out_dims);
    functor(place, &x, &out, reduce_dim);
  }
}

#define HANDLE_REDUCE_DIM(NDIM, RDIM)                        \
  if (ndim == NDIM && rdim == RDIM) {                        \
    ReduceFunctor<DeviceContext, OutT, NDIM, RDIM, Functor>( \
        dev_ctx, input, output, dims, keep_dim);             \
  }
//////////////// HandleLargeDim

inline void GetShuffledDim(const DDim& src_dims,
                           DDim* dst_dims,
                           const std::vector<int64_t>& reduced_dims,
                           std::vector<int>* perm_axis) {
  // check if it's a reduced dim
  std::vector<bool> src_dims_check(src_dims.size(), false);
  size_t src_size = src_dims.size();
  size_t reduce_size = reduced_dims.size();
  std::vector<int64_t> regular_reduced_dims = reduced_dims;
  for (size_t i = 0; i < regular_reduced_dims.size(); i++) {
    if (regular_reduced_dims[i] < 0) {
      regular_reduced_dims[i] = src_size + regular_reduced_dims[i];
    }
  }

  for (size_t i = 0; i < reduce_size; ++i) {
    dst_dims->at(src_size - reduce_size + i) =
        src_dims[regular_reduced_dims[i]];
    (*perm_axis)[src_size - reduce_size + i] = regular_reduced_dims[i];
    src_dims_check[regular_reduced_dims[i]] = true;
  }

  size_t offset = 0;
  for (size_t i = 0; i < src_dims_check.size(); ++i) {
    bool is_reduced = src_dims_check[i];
    if (!is_reduced) {
      (*perm_axis)[offset] = i;
      dst_dims->at(offset++) = src_dims[i];
    }
  }
}

template <typename DeviceContext, typename OutT>
void GetShuffledInput(const DeviceContext& dev_ctx,
                      const phi::DenseTensor& input,
                      phi::DenseTensor* shuffled_input,
                      const std::vector<int64_t>& dims) {
  DDim shuffled_dims(input.dims());
  std::vector<int> perm_axis(input.dims().size());
  GetShuffledDim(input.dims(), &shuffled_dims, dims, &perm_axis);

  shuffled_input->Resize(shuffled_dims);
  dev_ctx.template Alloc<OutT>(shuffled_input);

  phi::funcs::TransposeNormal<DeviceContext, OutT> trans;
  trans(dev_ctx, input, shuffled_input, perm_axis);
}

template <typename DeviceContext, typename OutT, typename Functor>
void HandleLargeDim(const DeviceContext& dev_ctx,
                    const phi::DenseTensor& input,
                    phi::DenseTensor* output,
                    const std::vector<int64_t>& dims,
                    bool keep_dim) {
  //  shuffle the reduced dim to the end
  phi::DenseTensor shuffled_input;
  GetShuffledInput<DeviceContext, OutT>(dev_ctx, input, &shuffled_input, dims);

  // transpose to 2D tensor whose shape is {unreduced, reduced}.
  const int64_t unreduced = output->numel();
  const int64_t reduced = shuffled_input.numel() / unreduced;
  shuffled_input.ResizeAndAllocate({unreduced, reduced});
  DDim output_dim = output->dims();
  output->ResizeAndAllocate({unreduced});
  ReduceFunctor<DeviceContext, OutT, 2, 1, Functor>(
      dev_ctx, shuffled_input, output, {1}, keep_dim);
  output->ResizeAndAllocate(output_dim);
}

////////////// ReduceKernel

template <typename DeviceContext, typename T, typename OutT, typename Functor>
void ReduceKernelImpl(const DeviceContext& dev_ctx,
                      const phi::DenseTensor& input,
                      phi::DenseTensor* output,
                      const std::vector<int64_t>& dims,
                      bool keep_dim,
                      bool reduce_all) {
  dev_ctx.template Alloc<OutT>(output);

  if (reduce_all) {
    // Flatten and reduce 1-D tensor
    auto x = EigenVector<OutT>::Flatten(input);
    auto out = EigenScalar<OutT>::From(*output);
    auto& dev = *dev_ctx.eigen_device();
    auto reduce_dim = Eigen::array<int, 1>({{0}});

    Functor functor;
    functor(dev, &x, &out, reduce_dim);
  } else {
    int ndim = input.dims().size();
    int rdim = dims.size();
    if (ndim > 6) {
      HandleLargeDim<DeviceContext, OutT, Functor>(
          dev_ctx, input, output, dims, keep_dim);

    } else {
      HANDLE_REDUCE_DIM(6, 5);
      HANDLE_REDUCE_DIM(6, 4);
      HANDLE_REDUCE_DIM(6, 3);
      HANDLE_REDUCE_DIM(6, 2);
      HANDLE_REDUCE_DIM(6, 1);
      HANDLE_REDUCE_DIM(5, 4);
      HANDLE_REDUCE_DIM(5, 3);
      HANDLE_REDUCE_DIM(5, 2);
      HANDLE_REDUCE_DIM(5, 1);
      HANDLE_REDUCE_DIM(4, 3);
      HANDLE_REDUCE_DIM(4, 2);
      HANDLE_REDUCE_DIM(4, 1);
      HANDLE_REDUCE_DIM(3, 2);
      HANDLE_REDUCE_DIM(3, 1);
      HANDLE_REDUCE_DIM(2, 1);
      HANDLE_REDUCE_DIM(1, 1);
    }
  }
}

1374 1375 1376
}  // namespace funcs

}  // namespace phi