test_matrix_nms_op.py 12.7 KB
Newer Older
Y
Yang Zhang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import unittest
import numpy as np
import copy
from op_test import OpTest
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
22
import paddle
Y
Yang Zhang 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144


def softmax(x):
    # clip to shiftx, otherwise, when calc loss with
    # log(exp(shiftx)), may get log(0)=INF
    shiftx = (x - np.max(x)).clip(-64.)
    exps = np.exp(shiftx)
    return exps / np.sum(exps)


def iou_matrix(a, b, norm=True):
    tl_i = np.maximum(a[:, np.newaxis, :2], b[:, :2])
    br_i = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])

    pad = not norm and 1 or 0

    area_i = np.prod(br_i - tl_i + pad, axis=2) * (tl_i < br_i).all(axis=2)
    area_a = np.prod(a[:, 2:] - a[:, :2] + pad, axis=1)
    area_b = np.prod(b[:, 2:] - b[:, :2] + pad, axis=1)
    area_o = (area_a[:, np.newaxis] + area_b - area_i)
    return area_i / (area_o + 1e-10)


def matrix_nms(boxes,
               scores,
               score_threshold,
               post_threshold=0.,
               nms_top_k=400,
               normalized=True,
               use_gaussian=False,
               gaussian_sigma=2.):
    all_scores = copy.deepcopy(scores)
    all_scores = all_scores.flatten()
    selected_indices = np.where(all_scores > score_threshold)[0]
    all_scores = all_scores[selected_indices]

    sorted_indices = np.argsort(-all_scores, axis=0, kind='mergesort')
    sorted_scores = all_scores[sorted_indices]
    sorted_indices = selected_indices[sorted_indices]
    if nms_top_k > -1 and nms_top_k < sorted_indices.shape[0]:
        sorted_indices = sorted_indices[:nms_top_k]
        sorted_scores = sorted_scores[:nms_top_k]

    selected_boxes = boxes[sorted_indices, :]
    ious = iou_matrix(selected_boxes, selected_boxes)
    ious = np.triu(ious, k=1)
    iou_cmax = ious.max(0)
    N = iou_cmax.shape[0]
    iou_cmax = np.repeat(iou_cmax[:, np.newaxis], N, axis=1)

    if use_gaussian:
        decay = np.exp((iou_cmax**2 - ious**2) * gaussian_sigma)
    else:
        decay = (1 - ious) / (1 - iou_cmax)
    decay = decay.min(0)
    decayed_scores = sorted_scores * decay

    if post_threshold > 0.:
        inds = np.where(decayed_scores > post_threshold)[0]
        selected_boxes = selected_boxes[inds, :]
        decayed_scores = decayed_scores[inds]
        sorted_indices = sorted_indices[inds]

    return decayed_scores, selected_boxes, sorted_indices


def multiclass_nms(boxes, scores, background, score_threshold, post_threshold,
                   nms_top_k, keep_top_k, normalized, use_gaussian,
                   gaussian_sigma):
    all_boxes = []
    all_cls = []
    all_scores = []
    all_indices = []
    for c in range(scores.shape[0]):
        if c == background:
            continue
        decayed_scores, selected_boxes, indices = matrix_nms(
            boxes, scores[c], score_threshold, post_threshold, nms_top_k,
            normalized, use_gaussian, gaussian_sigma)
        all_cls.append(np.full(len(decayed_scores), c, decayed_scores.dtype))
        all_boxes.append(selected_boxes)
        all_scores.append(decayed_scores)
        all_indices.append(indices)

    all_cls = np.concatenate(all_cls)
    all_boxes = np.concatenate(all_boxes)
    all_scores = np.concatenate(all_scores)
    all_indices = np.concatenate(all_indices)
    all_pred = np.concatenate(
        (all_cls[:, np.newaxis], all_scores[:, np.newaxis], all_boxes), axis=1)

    num_det = len(all_pred)
    if num_det == 0:
        return all_pred, np.array([], dtype=np.float32)

    inds = np.argsort(-all_scores, axis=0, kind='mergesort')
    all_pred = all_pred[inds, :]
    all_indices = all_indices[inds]

    if keep_top_k > -1 and num_det > keep_top_k:
        num_det = keep_top_k
        all_pred = all_pred[:keep_top_k, :]
        all_indices = all_indices[:keep_top_k]

    return all_pred, all_indices


def batched_multiclass_nms(boxes,
                           scores,
                           background,
                           score_threshold,
                           post_threshold,
                           nms_top_k,
                           keep_top_k,
                           normalized=True,
                           use_gaussian=False,
                           gaussian_sigma=2.):
    batch_size = scores.shape[0]
    det_outs = []
    index_outs = []
    lod = []
    for n in range(batch_size):
145 146 147 148
        nmsed_outs, indices = multiclass_nms(boxes[n], scores[n], background,
                                             score_threshold, post_threshold,
                                             nms_top_k, keep_top_k, normalized,
                                             use_gaussian, gaussian_sigma)
Y
Yang Zhang 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162
        nmsed_num = len(nmsed_outs)
        lod.append(nmsed_num)
        if nmsed_num == 0:
            continue
        indices += n * scores.shape[2]
        det_outs.append(nmsed_outs)
        index_outs.append(indices)
    if det_outs:
        det_outs = np.concatenate(det_outs)
        index_outs = np.concatenate(index_outs)
    return det_outs, index_outs, lod


class TestMatrixNMSOp(OpTest):
163

Y
Yang Zhang 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
    def set_argument(self):
        self.post_threshold = 0.
        self.use_gaussian = False

    def setUp(self):
        self.set_argument()
        N = 7
        M = 1200
        C = 21
        BOX_SIZE = 4
        background = 0
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = 0.01
        post_threshold = self.post_threshold
        use_gaussian = False
        if hasattr(self, 'use_gaussian'):
            use_gaussian = self.use_gaussian
        gaussian_sigma = 2.

        scores = np.random.random((N * M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)
        scores = np.reshape(scores, (N, M, C))
        scores = np.transpose(scores, (0, 2, 1))

        boxes = np.random.random((N, M, BOX_SIZE)).astype('float32')
        boxes[:, :, 0:2] = boxes[:, :, 0:2] * 0.5
        boxes[:, :, 2:4] = boxes[:, :, 2:4] * 0.5 + 0.5

        det_outs, index_outs, lod = batched_multiclass_nms(
            boxes, scores, background, score_threshold, post_threshold,
            nms_top_k, keep_top_k, True, use_gaussian, gaussian_sigma)

        empty = len(det_outs) == 0
        det_outs = np.array([], dtype=np.float32) if empty else det_outs
        index_outs = np.array([], dtype=np.float32) if empty else index_outs
        nmsed_outs = det_outs.astype('float32')

        self.op_type = 'matrix_nms'
        self.inputs = {'BBoxes': boxes, 'Scores': scores}
        self.outputs = {
            'Out': (nmsed_outs, [lod]),
207 208
            'Index': (index_outs[:, None], [lod]),
            'RoisNum': np.array(lod).astype('int32')
Y
Yang Zhang 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
        }
        self.attrs = {
            'background_label': 0,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'post_threshold': post_threshold,
            'use_gaussian': use_gaussian,
            'gaussian_sigma': gaussian_sigma,
            'normalized': True,
        }

    def test_check_output(self):
        self.check_output()


class TestMatrixNMSOpNoOutput(TestMatrixNMSOp):
226

Y
Yang Zhang 已提交
227 228 229 230 231
    def set_argument(self):
        self.post_threshold = 2.0


class TestMatrixNMSOpGaussian(TestMatrixNMSOp):
232

Y
Yang Zhang 已提交
233 234 235 236 237 238
    def set_argument(self):
        self.post_threshold = 0.
        self.use_gaussian = True


class TestMatrixNMSError(unittest.TestCase):
239

Y
Yang Zhang 已提交
240
    def test_errors(self):
241 242 243 244 245 246 247 248
        M = 1200
        N = 7
        C = 21
        BOX_SIZE = 4
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = 0.01
        post_threshold = 0.
Y
Yang Zhang 已提交
249

250 251 252 253 254 255 256
        boxes_np = np.random.random((M, C, BOX_SIZE)).astype('float32')
        scores = np.random.random((N * M, C)).astype('float32')
        scores = np.apply_along_axis(softmax, 1, scores)
        scores = np.reshape(scores, (N, M, C))
        scores_np = np.transpose(scores, (0, 2, 1))

        with program_guard(Program(), Program()):
257 258 259 260 261 262
            boxes_data = fluid.data(name='bboxes',
                                    shape=[M, C, BOX_SIZE],
                                    dtype='float32')
            scores_data = fluid.data(name='scores',
                                     shape=[N, C, M],
                                     dtype='float32')
Y
Yang Zhang 已提交
263 264 265

            def test_bboxes_Variable():
                # the bboxes type must be Variable
266 267 268 269 270 271
                fluid.layers.matrix_nms(bboxes=boxes_np,
                                        scores=scores_data,
                                        nms_top_k=nms_top_k,
                                        keep_top_k=keep_top_k,
                                        score_threshold=score_threshold,
                                        post_threshold=post_threshold)
272 273 274 275 276 277
                paddle.vision.ops.matrix_nms(bboxes=boxes_np,
                                             scores=scores_data,
                                             nms_top_k=nms_top_k,
                                             keep_top_k=keep_top_k,
                                             score_threshold=score_threshold,
                                             post_threshold=post_threshold)
Y
Yang Zhang 已提交
278 279 280

            def test_scores_Variable():
                # the scores type must be Variable
281 282 283 284 285 286
                fluid.layers.matrix_nms(bboxes=boxes_data,
                                        scores=scores_np,
                                        nms_top_k=nms_top_k,
                                        keep_top_k=keep_top_k,
                                        score_threshold=score_threshold,
                                        post_threshold=post_threshold)
287 288 289 290 291 292
                paddle.vision.ops.matrix_nms(bboxes=boxes_data,
                                             scores=scores_np,
                                             nms_top_k=nms_top_k,
                                             keep_top_k=keep_top_k,
                                             score_threshold=score_threshold,
                                             post_threshold=post_threshold)
Y
Yang Zhang 已提交
293 294 295 296

            def test_empty():
                # when all score are lower than threshold
                try:
297 298 299 300 301 302
                    fluid.layers.matrix_nms(bboxes=boxes_data,
                                            scores=scores_data,
                                            nms_top_k=nms_top_k,
                                            keep_top_k=keep_top_k,
                                            score_threshold=10.,
                                            post_threshold=post_threshold)
Y
Yang Zhang 已提交
303 304
                except Exception as e:
                    self.fail(e)
305 306 307 308 309 310 311 312 313
                try:
                    paddle.vision.ops.matrix_nms(bboxes=boxes_data,
                                                 scores=scores_data,
                                                 nms_top_k=nms_top_k,
                                                 keep_top_k=keep_top_k,
                                                 score_threshold=10.,
                                                 post_threshold=post_threshold)
                except Exception as e:
                    self.fail(e)
Y
Yang Zhang 已提交
314 315 316 317

            def test_coverage():
                # cover correct workflow
                try:
318 319 320 321 322 323
                    fluid.layers.matrix_nms(bboxes=boxes_data,
                                            scores=scores_data,
                                            nms_top_k=nms_top_k,
                                            keep_top_k=keep_top_k,
                                            score_threshold=score_threshold,
                                            post_threshold=post_threshold)
Y
Yang Zhang 已提交
324 325
                except Exception as e:
                    self.fail(e)
326 327 328 329 330 331 332 333 334 335
                try:
                    paddle.vision.ops.matrix_nms(
                        bboxes=boxes_data,
                        scores=scores_data,
                        nms_top_k=nms_top_k,
                        keep_top_k=keep_top_k,
                        score_threshold=score_threshold,
                        post_threshold=post_threshold)
                except Exception as e:
                    self.fail(e)
Y
Yang Zhang 已提交
336 337 338 339 340 341 342 343

            self.assertRaises(TypeError, test_bboxes_Variable)
            self.assertRaises(TypeError, test_scores_Variable)
            test_coverage()


if __name__ == '__main__':
    unittest.main()