random_crop_op.cc 3.9 KB
Newer Older
Y
yuyang18 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/random_crop_op.h"

namespace paddle {
namespace operators {
F
stash  
fengjiayi 已提交
18 19 20 21 22

class RandomCropOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

Z
Zeng Jinle 已提交
23 24 25 26 27 28 29
 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    auto shape = ctx->Attrs().Get<std::vector<int>>("shape");
    auto x_dim = ctx->GetInputDim("X");
    PADDLE_ENFORCE_GT(
        x_dim.size(), static_cast<int64_t>(shape.size()),
        platform::errors::InvalidArgument(
30 31 32 33 34
            "The dimensions of Input(X) must be greater than the length of "
            "Attr(shape),"
            "But received dimensions of Input(X) is [%d], receivecd length"
            "of Attr(shape) is [%d].",
            x_dim.size(), static_cast<int64_t>(shape.size())));
35
    auto out_dim = pten::vectorize<int>(x_dim);
Z
Zeng Jinle 已提交
36 37 38 39 40 41 42
    for (size_t i = 1; i <= shape.size(); ++i) {
      size_t x_i = x_dim.size() - i;
      size_t shape_i = shape.size() - i;
      if (ctx->IsRuntime() || (x_dim[x_i] > 0 && shape[shape_i] > 0)) {
        PADDLE_ENFORCE_GE(
            x_dim[x_i], shape[shape_i],
            platform::errors::InvalidArgument(
43 44 45 46
                "The dimensions of Input(X) must be larger than Attr(shape),"
                "But received dimensions of Input(X) is [%d], received"
                "size of Attr(shape) is [%d].",
                x_dim[x_i], shape[shape_i]));
Z
Zeng Jinle 已提交
47 48 49
      }
      out_dim[x_i] = shape[shape_i];
    }
50
    ctx->SetOutputDim("Out", pten::make_ddim(out_dim));
Z
Zeng Jinle 已提交
51 52
  }

F
stash  
fengjiayi 已提交
53 54
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
55 56 57
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
F
stash  
fengjiayi 已提交
58 59 60
  }
};

Y
yuyang18 已提交
61 62 63
class RandomCropOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
F
fengjiayi 已提交
64 65 66 67
    AddInput("X", "A batch of instances to random crop.");
    AddInput("Seed", "The random seed.");
    AddOutput("Out", "The cropped instance batch.");
    AddOutput("SeedOut", "The random seed after random cropping.")
Y
yuyang18 已提交
68
        .AsIntermediate();
F
fengjiayi 已提交
69
    AddAttr<std::vector<int>>("shape", "The shape of a cropped instance.");
F
fengjiayi 已提交
70 71 72 73 74
    AddAttr<int>("startup_seed",
                 "If the input 'Seed' is not initialized, the 'startup_seed' "
                 "will be used to replace it. Even so, the seed after random "
                 "crop will also be outputed to the 'SeedOut'.")
        .SetDefault(0);
F
fengjiayi 已提交
75
    AddComment(R"DOC(
Y
yuyang18 已提交
76 77
      This operator takes a batch of instance, and do random cropping on each instance.
      It means that cropping positions differs on each instance, which is determined
F
fengjiayi 已提交
78 79 80
      by an uniform random generator. All cropped instances have the same shape, which 
      is determined by the operator's attribute 'shape'.
    )DOC");
Y
yuyang18 已提交
81 82 83 84 85 86 87 88
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace f = paddle::framework;
H
hong 已提交
89 90 91 92
REGISTER_OPERATOR(
    random_crop, ops::RandomCropOp, ops::RandomCropOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
F
fengjiayi 已提交
93

Y
yuyang18 已提交
94 95 96 97
template <typename T>
using Kernel = ops::RandomCropKernel<paddle::platform::CPUDeviceContext, T>;
REGISTER_OP_CPU_KERNEL(random_crop, Kernel<float>, Kernel<int>, Kernel<double>,
                       Kernel<uint8_t>, Kernel<int16_t>);