test_where_op.py 16.1 KB
Newer Older
1 2
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# 
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
# 
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
# 
9 10 11 12 13 14 15 16 17
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import unittest
import numpy as np
G
GaoWei8 已提交
18
import paddle
19 20 21 22 23 24 25
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
from op_test import OpTest
from paddle.fluid import compiler, Program, program_guard
from paddle.fluid.op import Operator
from paddle.fluid.backward import append_backward
26
from paddle.fluid.framework import _test_eager_guard
27 28 29 30


class TestWhereOp(OpTest):
    def setUp(self):
31
        self.op_type = 'where'
32 33 34 35 36
        self.init_config()
        self.inputs = {'Condition': self.cond, 'X': self.x, 'Y': self.y}
        self.outputs = {'Out': np.where(self.cond, self.x, self.y)}

    def test_check_output(self):
37
        self.check_output(check_eager=True)
38 39

    def test_check_grad(self):
40
        self.check_grad(['X', 'Y'], 'Out', check_eager=True)
41 42

    def init_config(self):
43 44 45
        self.x = np.random.uniform((-3), 5, 100).astype('float64')
        self.y = np.random.uniform((-3), 5, 100).astype('float64')
        self.cond = np.zeros(100).astype('bool')
46 47 48 49


class TestWhereOp2(TestWhereOp):
    def init_config(self):
50 51 52
        self.x = np.random.uniform((-5), 5, (60, 2)).astype('float64')
        self.y = np.random.uniform((-5), 5, (60, 2)).astype('float64')
        self.cond = np.ones((60, 2)).astype('bool')
53 54 55 56


class TestWhereOp3(TestWhereOp):
    def init_config(self):
57 58
        self.x = np.random.uniform((-3), 5, (20, 2, 4)).astype('float64')
        self.y = np.random.uniform((-3), 5, (20, 2, 4)).astype('float64')
59 60 61 62
        self.cond = np.array(np.random.randint(2, size=(20, 2, 4)), dtype=bool)


class TestWhereAPI(unittest.TestCase):
G
GaoWei8 已提交
63 64
    def setUp(self):
        self.init_data()
65

G
GaoWei8 已提交
66 67 68
    def init_data(self):
        self.shape = [10, 15]
        self.cond = np.array(np.random.randint(2, size=self.shape), dtype=bool)
69 70
        self.x = np.random.uniform((-2), 3, self.shape).astype(np.float32)
        self.y = np.random.uniform((-2), 3, self.shape).astype(np.float32)
G
GaoWei8 已提交
71
        self.out = np.where(self.cond, self.x, self.y)
72

G
GaoWei8 已提交
73
    def ref_x_backward(self, dout):
74
        return np.where((self.cond == True), dout, 0)
G
GaoWei8 已提交
75 76

    def ref_y_backward(self, dout):
77
        return np.where((self.cond == False), dout, 0)
G
GaoWei8 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

    def test_api(self, use_cuda=False):
        for x_stop_gradient in [False, True]:
            for y_stop_gradient in [False, True]:
                with fluid.program_guard(Program(), Program()):
                    cond = fluid.layers.data(
                        name='cond', shape=self.shape, dtype='bool')
                    x = fluid.layers.data(
                        name='x', shape=self.shape, dtype='float32')
                    y = fluid.layers.data(
                        name='y', shape=self.shape, dtype='float32')
                    x.stop_gradient = x_stop_gradient
                    y.stop_gradient = y_stop_gradient
                    result = paddle.where(cond, x, y)
                    append_backward(layers.mean(result))
                    for use_cuda in [False, True]:
94 95
                        if (use_cuda and
                            (not fluid.core.is_compiled_with_cuda())):
G
GaoWei8 已提交
96
                            break
97 98
                        place = (fluid.CUDAPlace(0)
                                 if use_cuda else fluid.CPUPlace())
G
GaoWei8 已提交
99 100
                        exe = fluid.Executor(place)
                        fetch_list = [result, result.grad_name]
101
                        if (x_stop_gradient is False):
G
GaoWei8 已提交
102
                            fetch_list.append(x.grad_name)
103
                        if (y_stop_gradient is False):
G
GaoWei8 已提交
104 105 106 107 108 109 110 111
                            fetch_list.append(y.grad_name)
                        out = exe.run(
                            fluid.default_main_program(),
                            feed={'cond': self.cond,
                                  'x': self.x,
                                  'y': self.y},
                            fetch_list=fetch_list)
                        assert np.array_equal(out[0], self.out)
112
                        if (x_stop_gradient is False):
G
GaoWei8 已提交
113 114
                            assert np.array_equal(out[2],
                                                  self.ref_x_backward(out[1]))
115
                            if (y.stop_gradient is False):
G
GaoWei8 已提交
116 117
                                assert np.array_equal(
                                    out[3], self.ref_y_backward(out[1]))
118
                        elif (y.stop_gradient is False):
G
GaoWei8 已提交
119 120
                            assert np.array_equal(out[2],
                                                  self.ref_y_backward(out[1]))
121 122 123 124 125 126

    def test_api_broadcast(self, use_cuda=False):
        main_program = Program()
        with fluid.program_guard(main_program):
            x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[4, 2], dtype='float32')
127 128 129 130
            x_i = np.array([[0.9383, 0.1983, 3.2, 1.2]]).astype('float32')
            y_i = np.array(
                [[1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0]]).astype('float32')
            result = paddle.where((x > 1), x=x, y=y)
131
            for use_cuda in [False, True]:
132
                if (use_cuda and (not fluid.core.is_compiled_with_cuda())):
133
                    return
134
                place = (fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace())
135 136 137 138 139
                exe = fluid.Executor(place)
                out = exe.run(fluid.default_main_program(),
                              feed={'x': x_i,
                                    'y': y_i},
                              fetch_list=[result])
140
                assert np.array_equal(out[0], np.where((x_i > 1), x_i, y_i))
141

R
ronnywang 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    def test_scalar(self):
        paddle.enable_static()
        main_program = Program()
        with fluid.program_guard(main_program):
            cond_shape = [2, 4]
            cond = fluid.layers.data(
                name='cond', shape=cond_shape, dtype='bool')
            x_data = 1.0
            y_data = 2.0
            cond_data = np.array([False, False, True, True]).astype('bool')
            result = paddle.where(condition=cond, x=x_data, y=y_data)
            for use_cuda in [False, True]:
                if (use_cuda and (not fluid.core.is_compiled_with_cuda())):
                    return
                place = (fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace())
                exe = fluid.Executor(place)
                out = exe.run(fluid.default_main_program(),
                              feed={'cond': cond_data},
                              fetch_list=[result])
                expect = np.where(cond_data, x_data, y_data)
                assert np.array_equal(out[0], expect)

164 165 166 167 168 169 170 171
    def __test_where_with_broadcast_static(self, cond_shape, x_shape, y_shape):
        paddle.enable_static()
        main_program = Program()
        with fluid.program_guard(main_program):
            cond = fluid.layers.data(
                name='cond', shape=cond_shape, dtype='bool')
            x = fluid.layers.data(name='x', shape=x_shape, dtype='float32')
            y = fluid.layers.data(name='y', shape=y_shape, dtype='float32')
172 173 174 175
            cond_data_tmp = np.random.random(size=cond_shape).astype('float32')
            cond_data = (cond_data_tmp < 0.3)
            x_data = np.random.random(size=x_shape).astype('float32')
            y_data = np.random.random(size=y_shape).astype('float32')
176 177
            result = paddle.where(condition=cond, x=x, y=y)
            for use_cuda in [False, True]:
178
                if (use_cuda and (not fluid.core.is_compiled_with_cuda())):
179
                    return
180
                place = (fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace())
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
                exe = fluid.Executor(place)
                out = exe.run(
                    fluid.default_main_program(),
                    feed={'cond': cond_data,
                          'x': x_data,
                          'y': y_data},
                    fetch_list=[result])
                expect = np.where(cond_data, x_data, y_data)
                assert np.array_equal(out[0], expect)

    def test_static_api_broadcast_1(self):
        cond_shape = [2, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_2(self):
        cond_shape = [2, 1]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_3(self):
        cond_shape = [2, 2, 1]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_4(self):
        cond_shape = [2, 1, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_5(self):
        cond_shape = [3, 2, 2, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_6(self):
        cond_shape = [2, 2, 4]
        a_shape = [2, 2, 1]
        b_shape = [2, 2, 1]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_7(self):
        cond_shape = [2, 2, 4]
        a_shape = [2, 1, 4]
        b_shape = [2, 1, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_8(self):
        cond_shape = [3, 2, 2, 4]
        a_shape = [2, 2, 1]
        b_shape = [2, 2, 1]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

239 240 241 242

class TestWhereDygraphAPI(unittest.TestCase):
    def test_api(self):
        with fluid.dygraph.guard():
243 244 245
            x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype('float64')
            y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype('float64')
            cond_i = np.array([False, False, True, True]).astype('bool')
246 247 248
            x = fluid.dygraph.to_variable(x_i)
            y = fluid.dygraph.to_variable(y_i)
            cond = fluid.dygraph.to_variable(cond_i)
G
GaoWei8 已提交
249
            out = paddle.where(cond, x, y)
250 251
            assert np.array_equal(out.numpy(), np.where(cond_i, x_i, y_i))

R
ronnywang 已提交
252 253 254 255 256 257 258 259 260
    def test_scalar(self):
        with fluid.dygraph.guard():
            cond_i = np.array([False, False, True, True]).astype('bool')
            x = 1.0
            y = 2.0
            cond = fluid.dygraph.to_variable(cond_i)
            out = paddle.where(cond, x, y)
            assert np.array_equal(out.numpy(), np.where(cond_i, x, y))

261 262 263
    def __test_where_with_broadcast_dygraph(self, cond_shape, a_shape, b_shape):
        with fluid.dygraph.guard():
            cond_tmp = paddle.rand(cond_shape)
264
            cond = (cond_tmp < 0.3)
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
            a = paddle.rand(a_shape)
            b = paddle.rand(b_shape)
            result = paddle.where(cond, a, b)
            result = result.numpy()
            expect = np.where(cond, a, b)
            self.assertTrue(np.array_equal(expect, result))

    def test_dygraph_api_broadcast_1(self):
        cond_shape = [2, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_2(self):
        cond_shape = [2, 1]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_3(self):
        cond_shape = [2, 2, 1]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_4(self):
        cond_shape = [2, 1, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_5(self):
        cond_shape = [3, 2, 2, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_6(self):
        cond_shape = [2, 2, 4]
        a_shape = [2, 2, 1]
        b_shape = [2, 2, 1]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_7(self):
        cond_shape = [2, 2, 4]
        a_shape = [2, 1, 4]
        b_shape = [2, 1, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_8(self):
        cond_shape = [3, 2, 2, 4]
        a_shape = [2, 2, 1]
        b_shape = [2, 2, 1]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

R
ronnywang 已提交
320 321 322
    def test_where_condition(self):
        data = np.array([[True, False], [False, True]])
        with program_guard(Program(), Program()):
323
            x = fluid.layers.data(name='x', shape=[(-1), 2])
R
ronnywang 已提交
324 325 326 327 328
            y = paddle.where(x)
            self.assertEqual(type(y), tuple)
            self.assertEqual(len(y), 2)
            z = fluid.layers.concat(list(y), axis=1)
            exe = fluid.Executor(fluid.CPUPlace())
329 330 331
            (res, ) = exe.run(feed={'x': data},
                              fetch_list=[z.name],
                              return_numpy=False)
R
ronnywang 已提交
332 333 334 335
        expect_out = np.array([[0, 0], [1, 1]])
        self.assertTrue(np.allclose(expect_out, np.array(res)))
        data = np.array([True, True, False])
        with program_guard(Program(), Program()):
336
            x = fluid.layers.data(name='x', shape=[(-1)])
R
ronnywang 已提交
337 338 339 340 341
            y = paddle.where(x)
            self.assertEqual(type(y), tuple)
            self.assertEqual(len(y), 1)
            z = fluid.layers.concat(list(y), axis=1)
            exe = fluid.Executor(fluid.CPUPlace())
342 343 344
            (res, ) = exe.run(feed={'x': data},
                              fetch_list=[z.name],
                              return_numpy=False)
R
ronnywang 已提交
345 346 347
        expect_out = np.array([[0], [1]])
        self.assertTrue(np.allclose(expect_out, np.array(res)))

348 349 350 351 352 353 354 355 356 357 358 359
    def test_eager(self):
        with _test_eager_guard():
            self.test_api()
            self.test_dygraph_api_broadcast_1()
            self.test_dygraph_api_broadcast_2()
            self.test_dygraph_api_broadcast_3()
            self.test_dygraph_api_broadcast_4()
            self.test_dygraph_api_broadcast_5()
            self.test_dygraph_api_broadcast_6()
            self.test_dygraph_api_broadcast_7()
            self.test_dygraph_api_broadcast_8()

360 361 362 363

class TestWhereOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
364 365 366
            x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype('float64')
            y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype('float64')
            cond_i = np.array([False, False, True, True]).astype('bool')
367 368

            def test_Variable():
G
GaoWei8 已提交
369
                paddle.where(cond_i, x_i, y_i)
370 371 372 373 374 375 376

            self.assertRaises(TypeError, test_Variable)

            def test_type():
                x = fluid.layers.data(name='x', shape=[4], dtype='bool')
                y = fluid.layers.data(name='y', shape=[4], dtype='float16')
                cond = fluid.layers.data(name='cond', shape=[4], dtype='int32')
G
GaoWei8 已提交
377
                paddle.where(cond, x, y)
378 379 380

            self.assertRaises(TypeError, test_type)

R
ronnywang 已提交
381 382 383 384
    def test_value_error(self):
        with fluid.dygraph.guard():
            cond_shape = [2, 2, 4]
            cond_tmp = paddle.rand(cond_shape)
385
            cond = (cond_tmp < 0.3)
R
ronnywang 已提交
386 387 388
            a = paddle.rand(cond_shape)
            self.assertRaises(ValueError, paddle.where, cond, a)

389 390 391 392
    def test_eager(self):
        with _test_eager_guard():
            self.test_value_error()

393

394
if (__name__ == '__main__'):
395
    unittest.main()