dist_context.py 18.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import copy
from collections import defaultdict
from paddle.fluid import framework
from paddle.fluid import core
from .dist_attribute import TensorDistributedAttribute
from .dist_attribute import OperatorDistributedAttribute
from .dist_tensor import DistributedTensor
from .dist_op import DistributedOperator
from .process_mesh import ProcessMesh

# There always exists a default context for user. And user can set it to another one.
_g_default_distributed_context = None


def get_default_distributed_context():
    global _g_default_distributed_context
    if _g_default_distributed_context is None:
        dist_context = DistributedContext()
        set_default_distributed_context(dist_context)
    return _g_default_distributed_context


def set_default_distributed_context(dist_context):
    global _g_default_distributed_context
    _g_default_distributed_context = dist_context


class DistributedContext:
    """
    DistributedContext is used to collect related distributed information for program and graph.
    One auto-parallel run should use its own DistributedContext to avoid interfering other run.
    """

    def __init__(self, program=None):
        self._serial_program = program
        self._serial_graph = None
        self._is_initialized_for_program = False
        self._is_initialized_for_graph = False
        self._dist_tensors_for_program = {}
        self._dist_ops_for_program = {}
        self._dist_tensors_for_graph = {}
        self._dist_ops_for_graph = {}
        self._dist_op_context = DistributedOperatorContext()
        self._process_meshes = []

    @property
    def serial_program(self):
        return self._serial_program

    @property
    def serial_graph(self):
        return self._serial_graph

    @serial_program.setter
    def serial_program(self, program):
        assert self._serial_program is None, \
            "This distributed context has already been realted to a serial program"
        self._serial_program = program

    @property
    def process_meshes(self):
        return self._process_meshes

    @property
    def dist_op_context(self):
        return self._dist_op_context

    def add_process_mesh(self, process_mesh):
        assert isinstance(process_mesh, ProcessMesh), \
            'The type of dim_mapping must be ProcessMesh.'
        if process_mesh not in self.process_meshes:
            self._process_meshes.append(process_mesh)

    def add_dist_tensor_for_program(self, dist_tensor):
        inner_serial_tensor = dist_tensor.serial_tensor
        inner_serial_tensor_id = inner_serial_tensor.desc.id()
        self._dist_tensors_for_program[inner_serial_tensor_id] = dist_tensor

    def add_dist_op_for_program(self, dist_op):
        inner_serial_op = dist_op.serial_op
        inner_serial_op_id = inner_serial_op.desc.id()
        self._dist_ops_for_program[inner_serial_op_id] = dist_op

    def get_dist_tensor_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
        return self._dist_tensors_for_program.get(serial_tensor_id, None)

    def get_dist_tensor_for_graph(self, serial_tensor_node):
        serial_tensor_node_id = serial_tensor_node.id()
        return self._dist_tensors_for_graph.get(serial_tensor_node_id, None)

    def get_dist_op_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
        return self._dist_ops_for_program.get(serial_tensor_id, None)

    def get_dist_op_for_graph(self, serial_tensor_node):
        serial_tensor_node_id = serial_tensor_node.id()
        return self._dist_ops_for_graph.get(serial_tensor_node_id, None)

    def get_tensor_dist_attr_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
        dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id, None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
            return None

    def set_tensor_dist_attr_for_program(self, serial_tensor, dist_attr):
        dist_tensor = DistributedTensor(serial_tensor, dist_attr)
        self.add_dist_tensor_for_program(dist_tensor)

    def get_tensor_dist_attr_for_graph(self, serial_tensor_node):
        serial_tensor_node_id = serial_tensor_node.id()
        dist_tensor = self._dist_tensors_for_graph.get(serial_tensor_node_id,
                                                       None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
            return None

    def set_tensor_dist_attr_for_graph(self, serial_tensor_node, dist_attr):
        assert serial_tensor_node.is_var() and \
            serial_tensor_node.var() is not None
        serial_tensor_id = serial_tensor_node.var().id()
        dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id, None)
        assert dist_tensor is not None, \
            "The distributed tensor of the program has not been added to this context."
        serial_tensor_node_id = serial_tensor_node.id()
        new_dist_tensor = DistributedTensor(dist_tensor.serial_tensor,
                                            dist_attr)
        self._dist_tensors_for_graph[serial_tensor_node_id] = new_dist_tensor

    def get_op_dist_attr_for_program(self, serial_op):
        serial_op_id = serial_op.desc.id()
        dist_op = self._dist_ops_for_program.get(serial_op_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
            return None

    def set_op_dist_attr_for_program(self, serial_op, dist_attr):
        dist_op = DistributedOperator(serial_op, dist_attr)
        self.add_dist_op_for_program(dist_op)

    def get_op_dist_attr_for_graph(self, serial_op_node):
        serial_op_node_id = serial_op_node.id()
        dist_op = self._dist_ops_for_graph.get(serial_op_node_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
            return None

    def set_op_dist_attr_for_graph(self, serial_op_node, dist_attr):
        assert serial_op_node.is_op() and \
            serial_op_node.op() is not None
        serial_op_id = serial_op_node.op().id()
        dist_op = self._dist_ops_for_program.get(serial_op_id, None)
        assert dist_op is not None, \
            "The distributed operator of the program has not been added to this context."
        serial_op_node_id = serial_op_node.id()
        new_dist_op = DistributedOperator(dist_op.serial_op, dist_attr)
        self._dist_ops_for_graph[serial_op_node_id] = new_dist_op

    def init_dist_attr_for_program(self):
        assert self._serial_program, \
            "Please set the program of this context before initializing its distribute attributes."
        if self._is_initialized_for_program:
            return
        # Copy the dist tensors and dist ops annotated by users from the default context
        default_ctx = get_default_distributed_context()
        self._process_meshes = copy.deepcopy(default_ctx.process_meshes)
        for block in self._serial_program.blocks:
            for tensor in block.vars.values():
                # Copy the distributed tensors in the default context
                default_dist_tensor = default_ctx.get_dist_tensor_for_program(
                    tensor)
                if default_dist_tensor and default_ctx is not self:
                    self.add_dist_tensor_for_program(default_dist_tensor)
                current_dist_tensor = self.get_dist_tensor_for_program(tensor)
                if current_dist_tensor is None:
                    dist_tensor = DistributedTensor(tensor)
                    self.add_dist_tensor_for_program(dist_tensor)
            for op in block.ops:
                # Copy the distributed operators in the default context
                default_dist_op = default_ctx.get_dist_op_for_program(op)
                if default_dist_op and default_ctx is not self:
                    self.add_dist_op_for_program(default_dist_op)
                current_dist_op = self.get_dist_op_for_program(op)
                if current_dist_op is None:
                    dist_op = DistributedOperator(op)
                    self.add_dist_op_for_program(dist_op)
        self._is_initialized_for_program = True

    def init_dist_attr_for_graph(self):
        assert self._is_initialized_for_program, \
            "The program must be initialized before initializing the distributed attributes for its graph."
        if self._is_initialized_for_graph:
            return
        # Convert program to graph
        self._serial_graph = framework.IrGraph(
            core.Graph(self._serial_program.desc))
        all_nodes = self._serial_graph.all_nodes()
        for node in all_nodes:
            if node.is_var() and node.var() is not None:
                tensor_desc = node.var()
                tensor_id = tensor_desc.id()
                dist_tensor = self._dist_tensors_for_program.get(tensor_id,
                                                                 None)
                assert dist_tensor is not None, \
                    "Tensor must have a distributed tensor after the initialization for program."
                self.set_tensor_dist_attr_for_graph(node, dist_tensor.dist_attr)
            if node.is_op() and node.op() is not None:
                op_desc = node.op()
                op_id = op_desc.id()
                dist_op = self._dist_ops_for_program.get(op_id, None)
                assert dist_op is not None, \
                    "Operator must have a distributed operator after the initialization for program."
                self.set_op_dist_attr_for_graph(node, dist_op.dist_attr)
        self._is_initialized_for_graph = True

    def clear_dist_info_for_program(self):
        self._dist_tensors_for_program.clear()
        self._dist_ops_for_program.clear()

    def clear_dist_info_for_graph(self):
        self._dist_tensors_for_graph.clear()
        self._dist_ops_for_graph.clear()

    def copy_dist_attr_from_graph_to_program(self):
        assert self._is_initialized_for_program and self._is_initialized_for_graph, \
            "Both program and graph must be initialized."
        updated_tensors = {}
        all_nodes = self._serial_graph.all_nodes()
        for node in all_nodes:
            if node.is_var() and node.var() is not None:
                tensor_desc = node.var()
                tensor_id = tensor_desc.id()
                updated = updated_tensors.get(tensor_desc.name(), False)
                # If a var has multiples var nodes in graph, only use the first one for now
                if not updated:
                    tensor_dist_attr_for_graph = self.get_tensor_dist_attr_for_graph(
                        node)
                    dist_tensor_for_program = self._dist_tensors_for_program[
                        tensor_id]
                    dist_tensor_for_program.dist_attr = tensor_dist_attr_for_graph
                    updated_tensors[tensor_desc.name()] = True
            if node.is_op() and node.op() is not None:
                op_desc = node.op()
                op_id = op_desc.id()
                op_dist_attr_for_graph = self.get_op_dist_attr_for_graph(node)
                dist_op_for_program = self._dist_ops_for_program[op_id]
                dist_op_for_program.dist_attr = op_dist_attr_for_graph

    def amend_dist_attr_for_program(self):
        for dist_tensor in self._dist_tensors_for_program.values():
            serial_tensor = dist_tensor.serial_tensor
            dist_attr = dist_tensor.dist_attr
            if serial_tensor.type == core.VarDesc.VarType.READER:
                tensor_shape = []
            else:
                tensor_shape = serial_tensor.shape
            dims_mapping = dist_attr.dims_mapping
            process_mesh_shape = dist_attr.process_mesh.topology
            # If the dimension of tensor is less than the sharding dimension of process mesh,
            # we just amend the dimension mapping to -1. (Is this really OK?)
            for i in range(len(tensor_shape)):
                if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                    and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                    dims_mapping[i] = -1

        for dist_op in self._dist_ops_for_program.values():
            serial_op = dist_op.serial_op
            dist_attr = dist_op.dist_attr
            for arg_name in serial_op.input_arg_names:
                if dist_op.get_serial_input(arg_name) is None:
                    tensor_shape = []
                else:
                    if dist_op.get_serial_input(arg_name).type == core.VarDesc.VarType.READER \
                        or dist_op.serial_op.type == "create_py_reader":
                        tensor_shape = []
                    else:
                        tensor_shape = dist_op.get_serial_input(arg_name).shape
                dims_mapping = dist_attr.get_input_dims_mapping(arg_name)
                process_mesh_shape = dist_attr.process_mesh.topology
                # If the dimension of tensor is less than the sharding dimension of process mesh,
                # we just amend the dimension mapping to -1. (Is this really OK?)
                for i in range(len(tensor_shape)):
                    if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                        and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                        dims_mapping[i] = -1
            for arg_name in serial_op.output_arg_names:
                if dist_op.get_serial_output(
                        arg_name).type == core.VarDesc.VarType.READER:
                    tensor_shape = []
                else:
                    tensor_shape = dist_op.get_serial_output(arg_name).shape
                dims_mapping = dist_attr.get_output_dims_mapping(arg_name)
                process_mesh_shape = dist_attr.process_mesh.topology
                # If the dimension of tensor is less than the sharding dimension of process mesh,
                # we just amend the dimension mapping to -1. (Is this really OK?)
                for i in range(len(tensor_shape)):
                    if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                        and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                        dims_mapping[i] = -1

    def validate_dist_attr_for_program(self):
        if not self._is_initialized_for_program:
            assert False, \
                "Program must be initialized before validating its distributed attributes"
        for block in self.serial_program.blocks:
            for tensor in block.vars.values():
                dist_tensor = self.get_dist_tensor_for_program(tensor)
                if (dist_tensor is not None) and (
                        not dist_tensor.validate_dist_attr()):
                    assert False, "Tensor {} has a wrong distributed attributes {}.".format(
                        dist_tensor.serial_tensor.name, dist_tensor.dist_attr)
            for op in block.ops:
                dist_op = self.get_dist_op_for_program(op)
                if (dist_op is not None) and (not dist_op.validate_dist_attr()):
                    assert False, "Operator {} has a wrong distributed attributes {}.".format(
                        dist_op.serial_op.type, dist_tensor.dist_attr)
        return True

Z
zhaoyingli 已提交
338 339 340 341 342 343 344 345 346 347 348
    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
            if k == "_serial_program" or k == "_serial_graph":
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
        return result

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365

class DistributedOperatorContext:
    """
    DistributedOperatorContext is used to create a dist op desc in Program.
    Every time to create a new dist op, the context should be updated for it accordingly.
    """

    def __init__(self):
        self._dst_main_program = None
        self._dst_startup_program = None
        self._varname_mapping = None
        self._rank_id = None
        self._cur_src_op = None
        self._cur_dist_attr = None
        self.gradopidx2opidx = {}
        self.already_init_sync_vars = set()

Z
zhaoyingli 已提交
366 367 368 369 370 371 372 373 374 375 376
    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
            if k == "_dst_main_program" or k == "_dst_startup_program" or k == "_cur_src_op":
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
        return result

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
    def set_dst_main_program(self, prog):
        self._dst_main_program = prog

    def get_dst_main_program(self):
        return self._dst_main_program

    def set_dst_startup_program(self, prog):
        self._dst_startup_program = prog

    def get_dst_startup_program(self):
        return self._dst_startup_program

    def set_varname_mapping(self, mapping):
        self._varname_mapping = mapping

    def get_varname_mapping(self):
        return self._varname_mapping

    def set_rank_id(self, rank_id):
        self._rank_id = rank_id

    def get_rank_id(self):
        return self._rank_id

    def set_cur_src_op(self, cur_src_op):
        self._cur_src_op = cur_src_op

    def get_cur_src_op(self):
        return self._cur_src_op

407
    def prepare_context(self, src_op):
408 409 410 411 412 413 414 415

        self.set_cur_src_op(src_op)

        # build input varname mapping
        kinputs = {}
        for input_name in src_op.desc.input_names():
            varnames = []
            for varname in src_op.desc.input(input_name):
416
                assert varname in self._varname_mapping
417 418 419 420 421 422 423 424
                varnames.append(self._varname_mapping[varname])
            kinputs[input_name] = varnames

        # build output varname mapping
        koutputs = {}
        for output_name in src_op.desc.output_names():
            varnames = []
            for varname in src_op.desc.output(output_name):
425
                assert varname in self._varname_mapping
426 427 428 429
                varnames.append(self._varname_mapping[varname])
            koutputs[output_name] = varnames

        return kinputs, koutputs