pad_op.cc 4.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14

S
sneaxiy 已提交
15
#include <memory>
16

17
#include "paddle/fluid/framework/infershape_utils.h"
18
#include "paddle/fluid/framework/op_registry.h"
19
#include "paddle/fluid/platform/complex.h"
20
#include "paddle/phi/infermeta/unary.h"
W
wanghaoshuang 已提交
21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

class PadOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

29
  void InferShape(framework::InferShapeContext* ctx) const override {
30 31
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Pad");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Pad");
W
wanghaoshuang 已提交
32 33 34
  }
};

W
wanghaoshuang 已提交
35
class PadOpMaker : public framework::OpProtoAndCheckerMaker {
W
wanghaoshuang 已提交
36
 public:
Y
Yu Yang 已提交
37
  void Make() override {
W
wanghaoshuang 已提交
38 39 40 41
    AddInput("X",
             "The input of pad op. "
             "The input should be a k-D tensor(k > 0 and k < 7)");
    AddOutput("Out",
K
kexinzhao 已提交
42
              "The output of pad op. "
43
              "A tensor with the same shape as X.");
K
kexinzhao 已提交
44 45 46 47 48 49 50 51 52 53 54
    AddAttr<std::vector<int>>(
        "paddings",
        "(vector<int>) "
        "A list<int> to describe the padding rules for each dimension. "
        "For 2-D image tensor, paddings=[0, 1, 2, 3] means "
        "padding 0 row to top, 1 row to bottom, 2 columns to left "
        "and 3 columns to right. Size of paddings should be equal to "
        "2 * dimension size of the input tensor.");
    AddAttr<float>("pad_value",
                   "(float, default 0.0) "
                   "The value to fill the padded areas.")
55 56
        .SetDefault(0.0f)
        .SupportTensor();
W
wanghaoshuang 已提交
57
    AddComment(R"DOC(
K
kexinzhao 已提交
58 59
Pad Operator.

60
Pad input into output, as specified by paddings and pad_value.
K
kexinzhao 已提交
61
The input should be a k-D tensor(k > 0 and k < 7). As an example:
W
wanghaoshuang 已提交
62 63 64 65

Given:

X = [[1, 2],
K
kexinzhao 已提交
66
     [3, 4]],
W
wanghaoshuang 已提交
67

K
kexinzhao 已提交
68
paddings = [0, 1, 1, 2],
W
wanghaoshuang 已提交
69 70 71

and

K
kexinzhao 已提交
72
pad_value = 0,
Q
Qiao Longfei 已提交
73

K
kexinzhao 已提交
74
we have:
W
wanghaoshuang 已提交
75 76 77 78

Out = [[0, 1, 2, 0, 0]
       [0, 3, 4, 0, 0]
       [0, 0, 0, 0, 0]]
K
kexinzhao 已提交
79

W
wanghaoshuang 已提交
80 81 82 83 84 85 86 87
)DOC");
  }
};

class PadOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

88
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
89 90
    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
S
sneaxiy 已提交
91 92 93
      auto dout_dims = ctx->GetInputDim(framework::GradVarName("Out"));
      auto& paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
      for (int i = 0; i < dout_dims.size(); ++i) {
94 95 96
        if (ctx->IsRuntime() || (dout_dims[i] != -1)) {
          dout_dims[i] -= (paddings[i * 2] + paddings[i * 2 + 1]);
        }
S
sneaxiy 已提交
97 98
      }
      ctx->SetOutputDim(x_grad_name, dout_dims);
W
wanghaoshuang 已提交
99
    }
W
wanghaoshuang 已提交
100 101 102
  }
};

H
hong 已提交
103 104
template <typename T>
class PadOpGradMaker : public framework::SingleGradOpMaker<T> {
105
 public:
H
hong 已提交
106
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yu Yang 已提交
107 108

 protected:
109
  void Apply(GradOpPtr<T> bind) const override {
H
hong 已提交
110 111 112
    bind->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    bind->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    bind->SetAttrMap(this->Attrs());
Y
Yu Yang 已提交
113
    bind->SetType("pad_grad");
Y
Yu Yang 已提交
114
  }
115 116
};

C
ceci3 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129
template <typename T>
class PadOpDoubleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("pad");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(this->Attrs());
  }
};

W
wanghaoshuang 已提交
130 131 132 133
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
134 135
DECLARE_INFER_SHAPE_FUNCTOR(pad,
                            PadInferShapeFunctor,
136
                            PD_INFER_META(phi::PadInferMeta));
137

138 139 140
REGISTER_OPERATOR(pad,
                  ops::PadOp,
                  ops::PadOpMaker,
H
hong 已提交
141
                  ops::PadOpGradMaker<paddle::framework::OpDesc>,
142 143
                  ops::PadOpGradMaker<paddle::imperative::OpBase>,
                  PadInferShapeFunctor);
144 145
REGISTER_OPERATOR(pad_grad,
                  ops::PadOpGrad,
C
ceci3 已提交
146 147
                  ops::PadOpDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::PadOpDoubleGradMaker<paddle::imperative::OpBase>);