data_transform.cc 12.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/api/lib/data_transform.h"
16

17
#include "paddle/phi/api/lib/kernel_dispatch.h"
18
#include "paddle/phi/api/lib/utils/allocator.h"
19
#include "paddle/phi/backends/all_context.h"
20
#include "paddle/phi/core/kernel_registry.h"
21
#include "paddle/phi/core/tensor_utils.h"
22 23
#include "paddle/phi/kernels/cast_kernel.h"
#include "paddle/phi/kernels/transfer_layout_kernel.h"
24

25
#include "paddle/fluid/framework/tensor_util.h"
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

namespace paddle {
namespace experimental {

inline bool NeedTransformDataType(const DataType& input,
                                  const DataType& target,
                                  const TransformFlag& transform_flag) {
  return input != target &&
         (transform_flag.need_trans_data_type() ||
          target == DataType::COMPLEX64 || target == DataType::COMPLEX128);
}

inline bool NeedTransformPlace(const paddle::platform::Place& input,
                               const Backend& target,
                               const TransformFlag& transform_flag) {
41 42
  // NOTE(dev): The default value of TransformFlag is True, if it is set with
  // False
C
Chen Weihang 已提交
43
  // somewhere such as ops.yaml or backward.yaml that means we should skip data
44 45 46 47 48 49 50 51
  // transform. Because "stop_transform_" has highest priority.
  if (!transform_flag.need_trans_backend()) {
    return false;
  }
  bool ret = input.GetType() == AllocationType::GPUPINNED ||
             (target != Backend::ALL_BACKEND &&
              phi::TransToPhiBackend(input) !=
                  (target != Backend::GPUDNN ? target : Backend::GPU));
52 53 54
  return ret;
}

55
inline bool NeedTransformLayout(const DataLayout& input,
56
                                const DataLayout& target,
57
                                const paddle::platform::Place& place,
58 59 60 61
                                const TransformFlag& transform_flag) {
  bool ret = transform_flag.need_trans_layout() &&
             (input != DataLayout::ALL_LAYOUT &&
              target != DataLayout::ALL_LAYOUT && input != target);
62 63 64
  if (platform::is_gpu_place(place)) {
    return false;
  }
65 66 67
  return ret;
}

68 69
inline phi::DenseTensor TransDataLayout(const phi::DenseTensor& tensor,
                                        DataLayout layout) {
70 71 72 73
  auto& pool = paddle::platform::DeviceContextPool::Instance();
  VLOG(3) << "DataLayoutTransform src_layout: " << tensor.layout()
          << " dst_layout: " << layout;
  if (platform::is_cpu_place(tensor.place())) {
74 75
    auto* dev_ctx = static_cast<phi::CPUContext*>(pool.Get(tensor.place()));
    return phi::TransferLayout(*dev_ctx, tensor, layout);
76
  } else {
77
    PADDLE_THROW(phi::errors::PreconditionNotMet(
78 79
        "Unsupported data layout cast from CPU to GPU."));
  }
80
  return tensor;
81 82 83
}

template <typename Context>
84 85 86
phi::DenseTensor CastDateType(const Context& dev_ctx,
                              const phi::DenseTensor& tensor,
                              DataType dtype) {
87 88
  switch (tensor.dtype()) {
    case DataType::FLOAT32:
89
      return phi::Cast<float>(dev_ctx, tensor, dtype);
90
    case DataType::FLOAT64:
91
      return phi::Cast<double>(dev_ctx, tensor, dtype);
92
    case DataType::INT32:
93
      return phi::Cast<int32_t>(dev_ctx, tensor, dtype);
94
    case DataType::INT64:
95
      return phi::Cast<int64_t>(dev_ctx, tensor, dtype);
96
    case DataType::FLOAT16:
97
      return phi::Cast<phi::dtype::float16>(dev_ctx, tensor, dtype);
98
    case DataType::BFLOAT16:
99
      return phi::Cast<phi::dtype::bfloat16>(dev_ctx, tensor, dtype);
100
    case DataType::BOOL:
101
      return phi::Cast<bool>(dev_ctx, tensor, dtype);
102
    case DataType::INT16:
103
      return phi::Cast<int16_t>(dev_ctx, tensor, dtype);
104
    case DataType::UINT8:
105
      return phi::Cast<uint8_t>(dev_ctx, tensor, dtype);
106
    default:
107
      PADDLE_THROW(phi::errors::Unimplemented(
108 109 110 111 112 113
          "Data type (%s) is not supported when casting data type.",
          tensor.dtype()));
  }
}

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
114 115 116
phi::DenseTensor CastDateType(const phi::GPUContext& dev_ctx,
                              const phi::DenseTensor& tensor,
                              DataType dtype) {
117 118
  switch (tensor.dtype()) {
    case DataType::FLOAT32:
119
      return phi::Cast<float>(dev_ctx, tensor, dtype);
120
    case DataType::FLOAT64:
121
      return phi::Cast<double>(dev_ctx, tensor, dtype);
122
    case DataType::INT32:
123
      return phi::Cast<int32_t>(dev_ctx, tensor, dtype);
124
    case DataType::INT64:
125
      return phi::Cast<int64_t>(dev_ctx, tensor, dtype);
126
    case DataType::FLOAT16:
127
      return phi::Cast<phi::dtype::float16>(dev_ctx, tensor, dtype);
128
    case DataType::BOOL:
129
      return phi::Cast<bool>(dev_ctx, tensor, dtype);
130
    case DataType::INT16:
131
      return phi::Cast<int16_t>(dev_ctx, tensor, dtype);
132
    case DataType::UINT8:
133
      return phi::Cast<uint8_t>(dev_ctx, tensor, dtype);
134
    default:
135
      PADDLE_THROW(phi::errors::Unimplemented(
136 137 138 139 140 141
          "Data type (%s) is not supported when casting data type.",
          tensor.dtype()));
  }
}
#endif

142 143
inline phi::DenseTensor TransDataType(const phi::DenseTensor& tensor,
                                      DataType dtype) {
144 145 146 147 148
  auto& pool = paddle::platform::DeviceContextPool::Instance();

  VLOG(3) << "DataTypeTransform src_dtype: " << tensor.dtype()
          << " dst_dtype: " << dtype;

149 150
  DefaultAllocator alloc(tensor.place());
  phi::DenseTensor out(&alloc, {dtype, tensor.dims(), tensor.layout()});
151 152

  if (platform::is_cpu_place(tensor.place())) {
153
    auto* dev_ctx = static_cast<phi::CPUContext*>(pool.Get(tensor.place()));
154 155 156
    return CastDateType(*dev_ctx, tensor, dtype);
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  } else if (platform::is_gpu_place(tensor.place())) {
157
    auto* dev_ctx = static_cast<phi::GPUContext*>(pool.Get(tensor.place()));
158 159 160
    return CastDateType(*dev_ctx, tensor, dtype);
#endif
  } else {
161
    PADDLE_THROW(phi::errors::Unimplemented(
162 163 164 165 166
        "Place type is not supported when casting data type."));
  }
  return out;
}

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
inline phi::DenseTensor TransDataPlace(const phi::DenseTensor& tensor,
                                       Place dst_place) {
  VLOG(3) << "DeviceTransform in, src_place " << tensor.place()
          << " dst_place: " << dst_place;

  DefaultAllocator alloc(dst_place);
  phi::DenseTensor out(&alloc,
                       {tensor.dtype(), tensor.dims(), tensor.layout()});

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  auto& pool = paddle::platform::DeviceContextPool::Instance();
  // NOTE(yy): TransDataPlace should wait for computation of input.
  if (!platform::is_cuda_pinned_place(tensor.place())) {
    pool.Get(tensor.place())->Wait();
    pool.Get(dst_place)->Wait();
  }
#endif

  // FIXME(zcd): TransDataPlace is used to transform data from GPU to CPU and
  // the enforced checkings have been done in GetDeviceContext, so the
  // `dev_ctx->Wait()` is necessary. But `dev_ctx->Wait()` will make the program
  // slow, especially when the number of elements is little, for example,
  // the elements of learning rate are one and it's CPU side.
  // One solution is to use a CUDA kernel to complete the copy operation when
  // the transforming is from CPU to GPU and the number of elements is little.
  // But the embarrassment is that this solution this solution makes training
  // slower.
  paddle::framework::TensorCopySync(tensor, dst_place, &out);
  return out;
}

198
phi::DenseTensor TransformData(phi::DenseTensor* tensor,
199 200
                               const phi::TensorArgDef& target_args_def,
                               const TransformFlag& transform_flag) {
201 202 203
  phi::DenseTensor out = *tensor;
  bool trans_layout = false;
  bool trans_dtype = false;
204

205
  if (NeedTransformLayout(tensor->layout(),
206
                          target_args_def.layout,
207
                          tensor->place(),
208
                          transform_flag)) {
209
    out = TransDataLayout(out, target_args_def.layout);
210
    trans_layout = true;
211 212 213
  }

  if (NeedTransformDataType(
214
          tensor->dtype(), target_args_def.dtype, transform_flag)) {
215
    out = TransDataType(out, target_args_def.dtype);
216
    trans_dtype = true;
217 218 219 220
  }

  if (NeedTransformPlace(
          out.place(), target_args_def.backend, transform_flag)) {
221
    out = TransDataPlace(out, phi::TransToPhiPlace(target_args_def.backend));
222 223 224 225
    if (!trans_layout && !trans_dtype &&
        tensor->place().GetType() == AllocationType::GPUPINNED) {
      tensor->ShareBufferWith(out);
    }
226 227 228 229
  }
  return out;
}

230
std::shared_ptr<phi::DenseTensor> PrepareData(
231
    const Tensor& input,
232
    const phi::TensorArgDef& target_args_def,
233 234
    const TransformFlag& transform_flag) {
  const auto& tensor_in = input.impl();
Z
zyfncg 已提交
235 236 237 238 239 240 241 242
  if (tensor_in) {
    phi::DenseTensor& dense_tensor =
        *static_cast<phi::DenseTensor*>(tensor_in.get());
    if (!transform_flag.NeedTransform() || !dense_tensor.initialized() ||
        (!NeedTransformPlace(
             dense_tensor.place(), target_args_def.backend, transform_flag) &&
         !NeedTransformDataType(
             dense_tensor.dtype(), target_args_def.dtype, transform_flag) &&
243
         !NeedTransformLayout(dense_tensor.layout(),
244
                              target_args_def.layout,
245
                              dense_tensor.place(),
246
                              transform_flag))) {
Z
zyfncg 已提交
247 248 249
      return std::static_pointer_cast<phi::DenseTensor>(tensor_in);
    }
    phi::DenseTensor out =
250
        TransformData(&dense_tensor, target_args_def, transform_flag);
Z
zyfncg 已提交
251
    return std::make_shared<phi::DenseTensor>(std::move(out));
252
  }
Z
zyfncg 已提交
253
  return nullptr;
254 255
}

256
paddle::optional<phi::DenseTensor> PrepareData(
257 258 259 260
    const paddle::optional<Tensor>& input,
    const phi::TensorArgDef& target_args_def,
    const TransformFlag& transform_flag) {
  if (input) {
261
    return {*PrepareData(*input, target_args_def, transform_flag)};
H
hong 已提交
262
  }
263
  return paddle::none;
H
hong 已提交
264 265
}

266
std::unique_ptr<std::vector<phi::DenseTensor>> PrepareData(
267
    const std::vector<Tensor>& inputs,
268
    const phi::TensorArgDef& target_args_def,
269
    const TransformFlag& transform_flag) {
270
  auto pt_tensors = std::make_unique<std::vector<phi::DenseTensor>>();
271 272 273 274 275 276 277 278 279
  pt_tensors->reserve(inputs.size());

  for (const auto& input : inputs) {
    const auto& tensor_in = input.impl();
    if (!transform_flag.NeedTransform() || !tensor_in->initialized() ||
        (!NeedTransformPlace(
             tensor_in->place(), target_args_def.backend, transform_flag) &&
         !NeedTransformDataType(
             tensor_in->dtype(), target_args_def.dtype, transform_flag) &&
280
         !NeedTransformLayout(tensor_in->layout(),
281
                              target_args_def.layout,
282
                              tensor_in->place(),
283
                              transform_flag))) {
284
      pt_tensors->emplace_back(
285
          *std::dynamic_pointer_cast<phi::DenseTensor>(tensor_in));
286 287
    } else {
      pt_tensors->emplace_back(
288
          TransformData((static_cast<phi::DenseTensor*>(tensor_in.get())),
289 290 291 292 293
                        target_args_def,
                        transform_flag));
    }
  }

294
  return pt_tensors;
295 296
}

297 298 299 300 301 302 303 304 305 306
paddle::optional<std::vector<phi::DenseTensor>> PrepareData(
    const paddle::optional<std::vector<Tensor>>& inputs,
    const phi::TensorArgDef& target_args_def,
    const TransformFlag& transform_flag) {
  if (inputs) {
    return {*PrepareData(*inputs, target_args_def, transform_flag)};
  }
  return paddle::none;
}

307 308 309
void TransDataBackend(const phi::DenseTensor* tensor,
                      Backend target_backend,
                      phi::DenseTensor* out) {
310
  if (tensor && tensor->initialized()) {
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
    *out = TransDataPlace(*tensor, phi::TransToPhiPlace(target_backend));
  }
}

void TransDataBackend(const std::vector<phi::DenseTensor*>& tensors,
                      Backend target_backend,
                      std::vector<phi::DenseTensor*> outs) {
  size_t n = tensors.size();
  for (size_t i = 0; i < n; ++i) {
    TransDataBackend(tensors[i], target_backend, outs[i]);
  }
}

void TransDataBackend(const phi::SelectedRows* tensor,
                      Backend target_backend,
                      phi::SelectedRows* out) {
  if (tensor) {
    TransDataBackend(&tensor->value(), target_backend, out->mutable_value());
  }
}

332 333
}  // namespace experimental
}  // namespace paddle