tdm_sampler_op.cc 5.5 KB
Newer Older
C
Chengmo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

     http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License. */

#include "paddle/fluid/operators/tdm_sampler_op.h"
16

C
Chengmo 已提交
17
#include <vector>
18

C
Chengmo 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/sampler.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace operators {

class TDMSamplerOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("X",
             "X(Tensor), Input variable which"
             "mapping the leaf node idx of tdm tree,"
             "dtype support int32/int64");
    AddInput("Travel",
             "Travel(Tensor), must has the same dtype with Layer"
             "Contains path information of all leaf nodes to root node,"
             " dtype support int32/64");
    AddInput("Layer",
             "Layer(Tensor), must has the same dtype with Travel "
             "Indicates which nodes are in each layer");
    AddAttr<bool>("output_positive",
                  "output_positive(bool)"
                  "Whether positive samples are included in the output")
        .SetDefault(true);
    AddAttr<std::vector<int>>(
        "neg_samples_num_list",
        "neg_samples_num_list(python:list[int], C++:vector<int>)"
        "The num of negative samples in each layer")
        .SetDefault({});
    AddAttr<std::vector<int>>("layer_offset_lod",
                              "offset lod information of Layer")
        .SetDefault({});
    AddAttr<int>("seed",
                 "(int) The seed used in sampler. If it is 0, "
                 "the sampler will generate a seed randomly.")
        .SetDefault(0);
    AddAttr<int>("dtype",
                 "(int, default INT32) "
                 "Output data type.")
        .SetDefault(2);
    AddOutput("Out",
              "Sampling result lodTensor, with shape [batch_size, layer_num, "
              "neg_num_of_layer]");
    AddOutput("Labels",
              "Labels of sampling result, has the same shape with Out."
              "pos samples mapping value 1, neg sample mapping value 0")
        .AsDispensable();
    AddOutput(
        "Mask",
        "Padding flag of Sampling result, if sampling res comes from padding,"
        "it will be 0, else 1, lodTensor, with shape [batch_size, "
        "layer_num, neg_num_of_layer]");
    AddComment(R"DOC("
        **TDM Sampler**
        According to the input positive samples at leaf node, do negative sampling layer by layer on the given tree.")DOC");
  }
};

class TDMSamplerOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      platform::errors::InvalidArgument(
                          "Inputs(Input) of TdmSampler should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasInput("Travel"), true,
                      platform::errors::InvalidArgument(
                          "Inputs(Travel) of TdmSampler should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasInput("Layer"), true,
                      platform::errors::InvalidArgument(
                          "Inputs(Layer) of TdmSampler should not be null."));
    auto neg_samples_num_vec =
        ctx->Attrs().Get<std::vector<int>>("neg_samples_num_list");
    auto output_positive_flag = ctx->Attrs().Get<bool>("output_positive");

    int64_t sample_res_length = 0;
    for (auto sample_nums : neg_samples_num_vec) {
      sample_res_length += sample_nums + (int64_t)output_positive_flag;
    }

    auto input_dims = ctx->GetInputDim("X");
101
    auto ddim = phi::make_ddim({-1, sample_res_length});
C
Chengmo 已提交
102
    if (ctx->IsRuntime()) {
103
      auto output_dims = phi::vectorize(input_dims);
C
Chengmo 已提交
104
      auto batch_size = output_dims[0];
105
      ctx->SetOutputDim("Out", phi::make_ddim({batch_size, sample_res_length}));
C
Chengmo 已提交
106
      ctx->SetOutputDim("Labels",
107
                        phi::make_ddim({batch_size, sample_res_length}));
C
Chengmo 已提交
108
      ctx->SetOutputDim("Mask",
109
                        phi::make_ddim({batch_size, sample_res_length}));
C
Chengmo 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    } else {
      ctx->SetOutputDim("Out", ddim);
      ctx->SetOutputDim("Labels", ddim);
      ctx->SetOutputDim("Mask", ddim);
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(
    tdm_sampler, ops::TDMSamplerOp, ops::TDMSamplerOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OP_CPU_KERNEL(
    tdm_sampler, ops::TDMSamplerKernel<paddle::platform::CPUPlace, float>,
    ops::TDMSamplerKernel<paddle::platform::CPUPlace, double>,
    ops::TDMSamplerKernel<paddle::platform::CPUPlace, int>,
    ops::TDMSamplerKernel<paddle::platform::CPUPlace, int64_t>);