loss.py 170.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import math

17
# TODO: define loss functions of neural network
18
import paddle
19
from paddle import _C_ops, fluid, in_dynamic_mode
20
from paddle.framework import core
Z
Zman 已提交
21
from paddle.static.nn.control_flow import Assert
22
from paddle.utils import deprecated
23

24
from ...common_ops_import import Variable
25
from ...fluid.data_feeder import check_variable_and_dtype
26
from ...fluid.framework import _current_expected_place
27 28
from ...fluid.layer_helper import LayerHelper
from ...tensor.manipulation import reshape
29

30 31
__all__ = []

32 33
kIgnoreIndex = -100

34

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
def dice_loss(input, label, epsilon=0.00001, name=None):
    r"""

    Dice loss for comparing the similarity between the input predictions and the label.
    This implementation is for binary classification, where the input is sigmoid
    predictions of each pixel, usually used for segmentation task. The dice loss can
    be defined as the following equation:

    .. math::

        dice\_loss &= 1 - \frac{2 * intersection\_area}{total\_area} \\
                  &= \frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\
                  &= \frac{(union\_area - intersection\_area)}{total\_area}


    Parameters:
        input (Tensor): Tensor, rank>=2, shape is :math:`[N_1, N_2, ..., N_k, D]`, where :math:`N_1` is
                          the batch_size, :math:`D` is the number of categories. It is usually the output
                          predictions of sigmoid activation. The data type can be float32 or float64.
        label (Tensor): Tensor, the groud truth with the same rank as input, shape is :math:`[N_1, N_2, ..., N_k, 1]`.
                          where :math:`N_1` is the batch_size. The data type can be int32 or int64.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`

    Returns:
64
        0-D Tensor, which shape is [], data type is the same as `input` .
65 66 67 68

    Example:
        .. code-block:: python

69 70
            >>> import paddle
            >>> import paddle.nn.functional as F
71

72 73 74 75
            >>> x = paddle.randn((3,224,224,2))
            >>> label = paddle.randint(high=2, shape=(3,224,224,1))
            >>> predictions = F.softmax(x)
            >>> loss = F.dice_loss(input=predictions, label=label)
76 77 78
    """
    assert input.dtype in (paddle.float32, paddle.float64)
    assert label.dtype in (paddle.int32, paddle.int64)
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    assert (
        len(input.shape) >= 2
    ), "The rank of input should be greater than or equal to 2."
    assert len(input.shape) == len(label.shape), (
        "The rank of input and label should be equal, "
        "but received input: %d, label: %d."
        % (len(input.shape), len(label.shape))
    )
    assert label.shape[-1] == 1, (
        "The last dimension of label should be 1, "
        "but received %d." % label.shape[-1]
    )
    assert (
        input.shape[:-1] == label.shape[:-1]
    ), "All dimensions should be equal except the last one."
    assert (
        input.numel() > 0 and label.numel() > 0
    ), "Any dimension of input and label cannot be equal to 0."
97 98 99 100 101 102

    label = paddle.squeeze(label, [-1])
    label = paddle.nn.functional.one_hot(label, input.shape[-1])
    reduce_dim = list(range(1, len(input.shape)))
    inse = paddle.sum(input * label, axis=reduce_dim)
    dice_denominator = paddle.sum(input, axis=reduce_dim) + paddle.sum(
103 104
        label, axis=reduce_dim
    )
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return paddle.mean(dice_score)


def log_loss(input, label, epsilon=1e-4, name=None):
    r"""

    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \log{(input + \epsilon)}
              - (1 - label) * \log{(1 - input + \epsilon)}

    Args:
        input (Tensor|list):  A 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator. Data type float32.
        label (Tensor|list):  The ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
                                Data type float32.
        epsilon (float, optional): A small number for numerical stability. Default 1e-4.
        name(str|None): For detailed information, please refer to
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.

    Returns:
        Tensor, which shape is [N x 1], data type is float32.

    Examples:
        .. code-block:: python

139 140
            >>> import paddle
            >>> import paddle.nn.functional as F
141

142 143 144
            >>> label = paddle.randn((10,1))
            >>> prob = paddle.randn((10,1))
            >>> cost = F.log_loss(input=prob, label=label)
145
    """
146
    if in_dynamic_mode():
147
        return _C_ops.log_loss(input, label, epsilon)
148 149 150 151 152 153 154

    helper = LayerHelper('log_loss', **locals())
    check_variable_and_dtype(input, 'input', ['float32'], 'log_loss')
    check_variable_and_dtype(label, 'label', ['float32'], 'log_loss')

    loss = helper.create_variable_for_type_inference(dtype=input.dtype)

155 156 157 158 159 160
    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input], 'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon},
    )
161 162 163
    return loss


164 165 166 167 168 169 170 171 172
def fluid_softmax_with_cross_entropy(
    logits,
    label,
    soft_label=False,
    ignore_index=-100,
    numeric_stable_mode=True,
    return_softmax=False,
    axis=-1,
):
173 174
    r"""

175 176
    This operator implements the cross entropy loss function with softmax. This function
    combines the calculation of the softmax operation and the cross entropy loss function
177 178 179 180 181 182
    to provide a more numerically stable gradient.

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.

183 184 185
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators
    expects mutually exclusive hard labels, each sample in a batch is in exactly
    one class with a probability of 1.0. Each sample in the batch will have a
186 187 188 189 190 191 192
    single label.

    The equation is as follows:

    1) Hard label (one-hot label, so every sample has exactly one class)

    .. math::
193
        \\loss_j=-\text{logits}_{label_j} +\log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right), j = 1,..., K
194 195 196 197

    2) Soft label (each sample can have a distribution over all classes)

    .. math::
198
        \\loss_j= -\sum_{i=0}^{K}\text{label}_i\left(\text{logits}_i - \log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right)\right), j = 1,...,K
199 200 201 202

    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:

    .. math::
203 204 205
        \\max_j&=\max_{i=0}^{K}{\text{logits}_i} \\
                log\_max\_sum_j &= \log\sum_{i=0}^{K}\exp(logits_i - max_j)\\
                softmax_j &= \exp(logits_j - max_j - {log\_max\_sum}_j)
206 207 208 209 210 211

    and then cross entropy loss is calculated by softmax and label.

    Args:
        logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
        label (Tensor): The ground truth  ``Tensor`` , data type is the same
212 213 214
            as the ``logits`` . If :attr:`soft_label` is set to :attr:`True`,
            Label is a ``Tensor``  in the same shape with :attr:`logits`.
            If :attr:`soft_label` is set to :attr:`True`, Label is a ``Tensor``
215 216 217 218 219
            in the same shape with :attr:`logits` expect shape in dimension :attr:`axis` as 1.
        soft_label (bool, optional): A flag to indicate whether to interpretant the given
            labels as soft labels. Default False.
        ignore_index (int, optional): Specifies a target value that is ignored and does
                                      not contribute to the input gradient. Only valid
220
                                      if :attr:`soft_label` is set to :attr:`False`.
221 222 223
                                      Default: kIgnoreIndex(-100).
        numeric_stable_mode (bool, optional): A flag to indicate whether to use a more
                                              numerically stable algorithm. Only valid
224 225 226
                                              when :attr:`soft_label` is :attr:`False`
                                              and GPU is used. When :attr:`soft_label`
                                              is :attr:`True` or CPU is used, the
227 228 229 230 231
                                              algorithm is always numerically stable.
                                              Note that the speed may be slower when use
                                              stable algorithm. Default: True.
        return_softmax (bool, optional): A flag indicating whether to return the softmax
                                         along with the cross entropy loss. Default: False.
232
        axis (int, optional): The index of dimension to perform softmax calculations. It
233 234 235 236 237 238 239 240 241 242 243 244 245 246
                              should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                              is the rank of input :attr:`logits`. Default: -1.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
                                                    `return_softmax` is False, otherwise the tuple \
                                                    (loss, softmax), softmax is in the same shape \
                                                    with input logits and cross entropy loss is in \
                                                    the same shape with input logits except shape \
                                                    in dimension :attr:`axis` as 1.

    Examples:
        .. code-block:: python

247 248
            >>> import paddle
            >>> paddle.seed(2023)
249

250 251
            >>> logits = paddle.to_tensor([0.4, 0.6, 0.9])
            >>> label = paddle.randint(high=2, shape=[1], dtype="int64")
252

253 254 255 256
            >>> out = paddle.nn.functional.softmax_with_cross_entropy(logits=logits, label=label)
            >>> print(out)
            Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
                    [1.15328646])
257
    """
258 259
    input_dims = len(list(logits.shape))
    if input_dims == 0:
260
        raise ValueError('The dimension of input should be larger than zero!')
261 262 263 264

    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
265 266
            'Expected input_dims - 1 = label_dims or input_dims == label_dims\
             (got input_dims{}, label_dims{})'.format(
267 268 269 270 271
                input_dims, label_dims
            )
        )
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=axis)
272
    if in_dynamic_mode():
273 274 275 276 277 278 279 280 281
        softmax, loss = _C_ops.cross_entropy_with_softmax(
            logits,
            label,
            soft_label,
            True,
            numeric_stable_mode,
            ignore_index,
            axis,
        )
282 283 284 285
        if not return_softmax:
            return loss
        else:
            return loss, softmax
姜永久 已提交
286 287 288 289 290 291 292 293 294 295
    else:
        attrs = {
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis,
        }
        helper = LayerHelper('softmax_with_cross_entropy', **locals())
        softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
        loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
296

姜永久 已提交
297 298 299 300 301 302 303
        outputs = {'Softmax': softmax, 'Loss': loss}
        helper.append_op(
            type='softmax_with_cross_entropy',
            inputs={'Logits': logits, 'Label': label},
            outputs=outputs,
            attrs=attrs,
        )
304

姜永久 已提交
305 306
        if return_softmax:
            return loss, softmax
307

姜永久 已提交
308
        return loss
309 310 311


def npair_loss(anchor, positive, labels, l2_reg=0.002):
312 313
    """

314 315 316
    Npair loss requires paired data. Npair loss has two parts: the first part is L2
    regularizer on the embedding vector; the second part is cross entropy loss which
    takes the similarity matrix of anchor and positive as logits.
317

318 319
    For more information, please refer to:
    `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_
320

321
    Args:
322
      anchor(Tensor): embedding vector for the anchor image. shape=[batch_size, embedding_dims],
323
                        the data type is float32 or float64.
324
      positive(Tensor): embedding vector for the positive image. shape=[batch_size, embedding_dims],
325 326 327 328
                        the data type is float32 or float64.
      labels(Tensor): 1-D tensor. shape=[batch_size], the data type is float32 or float64 or int64.
      l2_reg(float32): L2 regularization term on embedding vector, default: 0.002.

329

330
    Returns:
331
      A 0-D Tensor representing the npair loss, the data type is the same as anchor, the shape is [].
332

333 334
    Examples:

335
        .. code-block:: python
336

337 338 339
            >>> import paddle
            >>> DATATYPE = "float32"
            >>> paddle.seed(2023)
340

341 342 343
            >>> anchor = paddle.rand(shape=(18, 6), dtype=DATATYPE)
            >>> positive = paddle.rand(shape=(18, 6), dtype=DATATYPE)
            >>> labels = paddle.rand(shape=(18,), dtype=DATATYPE)
344

345 346 347 348
            >>> npair_loss = paddle.nn.functional.npair_loss(anchor, positive, labels, l2_reg = 0.002)
            >>> print(npair_loss)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
                    2.94269347)
349

350
    """
S
supplyout 已提交
351 352 353 354
    if anchor.size == 0:
        raise ValueError("The dims of anchor should be greater than 0.")
    if positive.size == 0:
        raise ValueError("The dims of positive should be greater than 0.")
355 356 357 358 359 360 361 362 363
    check_variable_and_dtype(
        anchor, 'anchor', ['float32', 'float64'], 'npair_loss'
    )
    check_variable_and_dtype(
        positive, 'positive', ['float32', 'float64'], 'positive'
    )
    check_variable_and_dtype(
        labels, 'labels', ['float32', 'float64', 'int64'], 'labels'
    )
364 365 366 367 368 369
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = paddle.reshape(labels, shape=[batch_size, 1])
    labels = paddle.tile(labels, repeat_times=[1, batch_size])

370 371 372
    labels = paddle.equal(labels, paddle.transpose(labels, perm=[1, 0])).astype(
        'float32'
    )
373 374
    labels = labels / paddle.sum(labels, axis=1, keepdim=True)

375 376 377
    l2loss = paddle.mean(paddle.sum(paddle.square(anchor), 1)) + paddle.mean(
        paddle.sum(paddle.square(positive), 1)
    )
378 379
    l2loss = l2loss * Beta * l2_reg

380 381 382 383 384 385
    similarity_matrix = paddle.matmul(
        anchor, positive, transpose_x=False, transpose_y=True
    )
    softmax_ce = fluid_softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True
    )
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
    cross_entropy = paddle.sum(labels * softmax_ce, 0)
    celoss = paddle.mean(cross_entropy)

    return l2loss + celoss


def square_error_cost(input, label):
    r"""

    This op accepts input predictions and target label and returns the
    squared error cost.

    For predictions label, and target label, the equation is:

    .. math::

        Out = (input - label)^2

    Parameters:
        input (Tensor): Input tensor, the data type should be float32.
        label (Tensor): Label tensor, the data type should be float32.

    Returns:
409 410
        Tensor, The tensor storing the element-wise squared error
        difference between input and label.
411 412 413 414 415

    Examples:

        .. code-block:: python

416 417 418 419 420 421 422
            >>> import paddle
            >>> input = paddle.to_tensor([1.1, 1.9])
            >>> label = paddle.to_tensor([1.0, 2.0])
            >>> output = paddle.nn.functional.square_error_cost(input, label)
            >>> print(output)
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
                    [0.01000000, 0.01000000])
423 424

    """
425
    if in_dynamic_mode():
426 427
        minus_out = _C_ops.subtract(input, label)
        square_out = _C_ops.square(minus_out)
428
        return square_out
姜永久 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442
    else:
        check_variable_and_dtype(
            input, "input", ['float32', 'float64'], 'square_error_cost'
        )
        check_variable_and_dtype(
            label, "label", ['float32', 'float64'], 'square_error_cost'
        )
        helper = LayerHelper('square_error_cost', **locals())
        minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='elementwise_sub',
            inputs={'X': [input], 'Y': [label]},
            outputs={'Out': [minus_out]},
        )
443

姜永久 已提交
444 445 446 447 448 449 450 451 452
        square_out = helper.create_variable_for_type_inference(
            dtype=input.dtype
        )
        helper.append_op(
            type='square',
            inputs={'X': [minus_out]},
            outputs={'Out': [square_out]},
        )
        return square_out
453 454


455 456 457 458 459 460 461 462
def edit_distance(
    input,
    label,
    normalized=True,
    ignored_tokens=None,
    input_length=None,
    label_length=None,
):
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
    """
    This op computes the edit distances, also called Levenshtein distance, between a batch of
    hypothesis strings and their references. It measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into another.
    The operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", A will be transformed into B
    at least after two substitutions and one insertion:

    "kitten" -> "sitten" -> "sittin" -> "sitting"

    So the edit distance between A and B is 3.

    The input is a Tensor, the input_length and label_length should be supported.

    The `batch_size` of labels should be same as `input`.

    The output include the edit distance value between every pair of input and related label, and the number of sequence.
    If Attr(normalized) is true,
    the edit distance value will be divided by the length of label.

    Parameters:
        input(Tensor): The input tensor, its rank should be equal to 2 and its data type should be int64.
        label(Tensor): The label tensor, its rank should be equal to 2 and its data type should be int64.
        normalized(bool, default True): Indicated whether to normalize the edit distance.
        ignored_tokens(list<int>, default None): Tokens that will be removed before
                                     calculating edit distance.
        input_length(Tensor): The length for each sequence in `input` if it's of Tensor type, it should have shape `(batch_size, )` and its data type should be int64.
        label_length(Tensor): The length for each sequence in `label` if it's of Tensor type, it should have shape `(batch_size, )` and its data type should be int64.
        NOTE: To be avoid unexpected result, the value of every elements in input_length and label_length should be equal to the value of the second dimension of input and label. For example, The input: [[1,2,3,4],[5,6,7,8],[9,10,11,12]], the shape of input is [3,4] and the input_length should be [4,4,4]

    Returns:
496 497 498
        Tuple:
            distance(Tensor): edit distance result, its data type is float32, and its shape is (batch_size, 1).
            sequence_num(Tensor): sequence number, its data type is float32, and its shape is (1,).
499 500 501 502

    Examples:
        .. code-block:: python

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
            >>> import paddle
            >>> import paddle.nn.functional as F

            >>> input = paddle.to_tensor([[1,2,3],[4,5,6],[4,4,4],[1,1,1]], dtype='int64')
            >>> label = paddle.to_tensor([[1,3,4,1],[4,5,8,1],[7,7,7,1],[1,1,1,1]], dtype='int64')
            >>> input_len = paddle.to_tensor([3,3,3,3], dtype='int64')
            >>> label_len = paddle.to_tensor([4,4,4,4], dtype='int64')

            >>> distance, sequence_num = F.loss.edit_distance(input=input, label=label, input_length=input_len, label_length=label_len, normalized=False)
            >>> print(distance)
            Tensor(shape=[1], dtype=int64, place=Place(cpu), stop_gradient=True,
                    [4])
            >>> print(sequence_num)
            Tensor(shape=[4, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
                    [[3.],
                     [2.],
                     [4.],
                     [1.]])

            >>> distance, sequence_num = F.loss.edit_distance(input=input, label=label, input_length=input_len, label_length=label_len, normalized=True)
            >>> print(distance)
            Tensor(shape=[1], dtype=int64, place=Place(cpu), stop_gradient=True,
                    [4])
            >>> print(sequence_num)
            Tensor(shape=[4, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
                    [[0.75000000],
                     [0.50000000],
                     [1.        ],
                     [0.25000000]])
532 533

    """
534

535 536 537 538 539 540 541
    helper = LayerHelper("edit_distance", **locals())

    # remove some tokens from input and labels
    if ignored_tokens is not None and len(ignored_tokens) > 0:
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")

542 543 544 545 546 547
        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
            attrs={"tokens": ignored_tokens},
        )
548 549
        input = erased_input

550 551 552 553 554 555
        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
            outputs={"Out": [erased_label]},
            attrs={"tokens": ignored_tokens},
        )
556 557
        label = erased_label

558
    if in_dynamic_mode():
559 560 561
        return _C_ops.edit_distance(
            input, label, input_length, label_length, normalized
        )
Z
zhiboniu 已提交
562

563 564
    check_variable_and_dtype(input, 'input', ['int64'], 'edit_distance')
    check_variable_and_dtype(label, 'label', ['int64'], 'edit_distance')
565 566 567 568 569 570 571 572
    this_inputs = {"Hyps": [input], "Refs": [label]}
    if input_length is not None and label_length is not None:
        this_inputs['HypsLength'] = [input_length]
        this_inputs['RefsLength'] = [label_length]

    # edit distance op
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
573 574 575 576 577 578
    helper.append_op(
        type="edit_distance",
        inputs=this_inputs,
        outputs={"Out": [edit_distance_out], "SequenceNum": [sequence_num]},
        attrs={"normalized": normalized},
    )
579 580 581 582

    return edit_distance_out, sequence_num


583 584 585
def binary_cross_entropy(
    input, label, weight=None, reduction='mean', name=None
):
586
    """
学渣戊's avatar
学渣戊 已提交
587
    Measure the binary_cross_entropy loss between input predictions ``input``
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
    and target labels ``label`` . The binary_cross_entropy loss can be described as:

    If :attr:`weight` is set, the loss is:

    .. math::
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`weight` is None, the loss is:

    .. math::
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`.

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(Out)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(Out)

    Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label``
    should be numbers between 0 and 1.

    Parameters:
        input (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``input``
618
            should always be the output of sigmod.  Available dtype is float16, float32, float64.
619 620
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``input``. The target labels which values should be numbers between 0 and 1.
621
            Available dtype is float16, float32, float64.
622 623 624 625 626 627 628 629 630 631 632 633 634 635
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, has to be a Tensor of size nbatch and the data type
            is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.


    Returns:
学渣戊's avatar
学渣戊 已提交
636
        Tensor. If ``reduction`` is ``'none'``, the shape of output is
637 638 639 640 641
            same as ``input`` , else the shape of output is scalar.

    Examples:
        .. code-block:: python

642
            >>> import paddle
643

644 645 646 647 648 649
            >>> input = paddle.to_tensor([0.5, 0.6, 0.7], 'float32')
            >>> label = paddle.to_tensor([1.0, 0.0, 1.0], 'float32')
            >>> output = paddle.nn.functional.binary_cross_entropy(input, label)
            >>> print(output)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
                    0.65537095)
650 651 652 653 654

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy should be 'sum', "
655 656 657
            "'mean' or 'none', but received %s, which is not allowed."
            % reduction
        )
658

659
    if in_dynamic_mode():
660
        out = _C_ops.bce_loss(input, label)
661
        if weight is not None:
662
            out = _C_ops.multiply(out, weight, 'axis', -1)
663 664

        if reduction == 'sum':
665
            return _C_ops.sum(out, [], None, False)
666

667
        elif reduction == 'mean':
668
            return _C_ops.mean_all(out)
669 670 671
        else:
            return out
    else:
姜永久 已提交
672
        check_variable_and_dtype(
673 674 675 676
            input,
            'input',
            ['float16', 'float32', 'float64'],
            'binary_cross_entropy',
姜永久 已提交
677 678
        )
        check_variable_and_dtype(
679 680 681 682
            label,
            'label',
            ['float16', 'float32', 'float64'],
            'binary_cross_entropy',
姜永久 已提交
683
        )
J
Jiabin Yang 已提交
684

姜永久 已提交
685 686 687 688 689 690 691 692 693 694 695
        sub_name = name if weight is None and reduction == 'none' else None
        helper = LayerHelper("binary_cross_entropy", name=sub_name)
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='bce_loss',
            inputs={
                'X': [input],
                'Label': [label],
            },
            outputs={'Out': [out]},
        )
J
Jiabin Yang 已提交
696

姜永久 已提交
697 698 699 700
        if weight is not None:
            if isinstance(weight, paddle.static.Variable):
                weight_name = name if reduction == 'none' else None
                out = paddle.multiply(out, weight, name=weight_name)
J
Jiabin Yang 已提交
701
            else:
姜永久 已提交
702 703 704 705 706 707 708 709 710 711
                raise ValueError(
                    "The weight is not a Tensor, please convert to Tensor."
                )

        if reduction == 'sum':
            return paddle.sum(out, name=name)
        elif reduction == 'mean':
            return paddle.mean(out, name=name)
        else:
            return out
712 713


714 715 716
def binary_cross_entropy_with_logits(
    logit, label, weight=None, reduction='mean', pos_weight=None, name=None
):
717
    r"""
学渣戊's avatar
学渣戊 已提交
718
    Combine the sigmoid layer and the :ref:`api_nn_loss_BCELoss` layer.
719 720 721 722 723 724 725

    This measures the element-wise probability error in classification tasks
    in which each class is independent.
    This can be thought of as predicting labels for a data-point, where labels
    are not mutually exclusive. For example, a news article can be about
    politics, technology or sports at the same time or none of these.

学渣戊's avatar
学渣戊 已提交
726
    Firstly, calculate loss function as follows:
727 728

    .. math::
729
           Out = -Labels * \log(\sigma(Logit)) - (1 - Labels) * \log(1 - \sigma(Logit))
730

731
    We know that :math:`\sigma(Logit) = \frac{1}{1 + e^{-Logit}}`. By substituting this we get:
732 733

    .. math::
734
           Out = Logit - Logit * Labels + \log(1 + e^{-Logit})
735

N
Noel 已提交
736
    For stability and to prevent overflow of :math:`e^{-Logit}` when Logit < 0,
737 738 739
    we reformulate the loss as follows:

    .. math::
740
           Out = \max(Logit, 0) - Logit * Labels + \log(1 + e^{-\|Logit\|})
741

学渣戊's avatar
学渣戊 已提交
742
    Then, if ``weight`` or ``pos_weight`` is not None, then multiply the
743 744 745 746
    weight tensor on the loss `Out`. The ``weight`` tensor will attach different
    weight on every items in the batch. The ``pos_weight`` will attach different
    weight on the positive label of each class.

学渣戊's avatar
学渣戊 已提交
747 748
    Finally, apply reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, will return the original loss `Out`.
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target labels ``label`` should be numbers between 0 and 1.

    Args:
        logit (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``logit``
            is usually the output of Linear layer. Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``logit``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, it has to be a 1D Tensor whose size is `[N, ]`,
            The data type is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        pos_weight (Tensor, optional): A weight of positive examples. Must be a vector
            with length equal to the number of classes. The data type is float32, float64.
            Default is ``'None'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
学渣戊's avatar
学渣戊 已提交
777
        Tensor. If ``reduction`` is ``'none'``, the shape of output is
778 779 780 781 782 783
            same as ``logit`` , else the shape of output is scalar.

    Examples:

        .. code-block:: python

784
            >>> import paddle
N
Noel 已提交
785

786 787 788 789 790 791
            >>> logit = paddle.to_tensor([5.0, 1.0, 3.0])
            >>> label = paddle.to_tensor([1.0, 0.0, 1.0])
            >>> output = paddle.nn.functional.binary_cross_entropy_with_logits(logit, label)
            >>> print(output)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
                    0.45618808)
792 793 794 795 796 797

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy_with_logits "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
798 799
            % reduction
        )
800

801
    if in_dynamic_mode():
802 803 804
        one = _C_ops.full(
            [1],
            float(1.0),
805
            logit.dtype,
806 807
            _current_expected_place(),
        )
808

809
        if pos_weight is not None:
810
            pos_weight = _C_ops.add(
811 812
                _C_ops.multiply(label, _C_ops.subtract(pos_weight, one)), one
            )
813 814 815 816
        out = _C_ops.sigmoid_cross_entropy_with_logits(
            logit, label, pos_weight, False, -100
        )

817
        if weight is not None:
818
            out = _C_ops.multiply(out, weight)
819 820

        if reduction == "sum":
821
            return _C_ops.sum(out, [], None, False)
822
        elif reduction == "mean":
823
            return _C_ops.mean_all(out)
H
hong 已提交
824
        else:
825
            return out
姜永久 已提交
826
    else:
827
        check_variable_and_dtype(
姜永久 已提交
828 829
            logit,
            'logit',
830 831 832 833
            ['float32', 'float64'],
            'binary_cross_entropy_with_logits',
        )
        check_variable_and_dtype(
姜永久 已提交
834 835
            label,
            'label',
836 837 838
            ['float32', 'float64'],
            'binary_cross_entropy_with_logits',
        )
姜永久 已提交
839 840 841
        sigmoid_name = None
        if reduction == 'none' and pos_weight is None and weight is None:
            sigmoid_name = name
842

姜永久 已提交
843 844 845 846 847 848 849 850 851 852 853 854
        helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

        out = helper.create_variable_for_type_inference(dtype=logit.dtype)

        one = paddle.full(shape=[1], fill_value=1.0, dtype=logit.dtype)
        if pos_weight is not None:
            check_variable_and_dtype(
                pos_weight,
                'pos_weight',
                ['float32', 'float64'],
                'binary_cross_entropy_with_logits',
            )
855
            pos_weight = paddle.add(
姜永久 已提交
856 857
                paddle.multiply(label, paddle.subtract(pos_weight, one)), one
            )
858 859 860 861 862 863 864

        helper.append_op(
            type="sigmoid_cross_entropy_with_logits",
            inputs={"X": logit, "Label": label, "pos_weight": pos_weight},
            attrs={"ignore_index": kIgnoreIndex, 'normalize': False},
            outputs={"Out": out},
        )
姜永久 已提交
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880

        if weight is not None:
            check_variable_and_dtype(
                weight,
                'weight',
                ['float32', 'float64'],
                'binary_cross_entropy_with_logits',
            )
            weight_name = name if reduction == 'none' else None
            out = paddle.multiply(out, weight, name=weight_name)

        if reduction == "sum":
            return paddle.sum(out, name=name)
        elif reduction == "mean":
            return paddle.mean(out, name=name)
        return out
881 882


883 884 885 886 887 888 889 890 891 892 893
def hsigmoid_loss(
    input,
    label,
    num_classes,
    weight,
    bias=None,
    path_table=None,
    path_code=None,
    is_sparse=False,
    name=None,
):
894 895 896
    """
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
897

898 899 900
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
901 902

    Comparing to softmax, hsigmoid can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
903 904
    represents the number of classes or the size of word dict.

905 906 907 908
    The API supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_.

    For the custom tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        input (Tensor): A tensor with the shape [N, D], where N is the size of mini-batch,
            and D is the feature size. Its data type supports float32 or float64.
        label (Tensor): A tensor contains the labels of training data. Its shape is [N, 1]
            and data type is int64.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (path_code and path_table is None are None), `num_classes`
            should not be None. If the custom tree is used (path_code and path_table is None are not None),
            `num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        weight (Tensor): A tensor with shape (num_classes - 1, D), with the same data type as `input`.
        bias (Tensor, optional): A tensor with shape (num_classes - 1, 1), with the same data type as `input`.
            If `bias` is None, no bias will be add. Default is None.
        path_table (Tensor, optional): A tensor that stores each batch of samples' path from leaf to root
            node, its shape is [N, L] and data type is int64, where L is the length of path. For each sample i,
            path_table[i] is a np.array like structure and each element in this array is the indexes in parent
            nodes' weight matrix. If `path_table` and `path_code` are None, the default tree will be used.
            Default is None.
        path_code (Tensor, optional): A tensor that stores each batch of samples' code of path from leaf
            to root node, its shape is [N, L] and data type is int64, which is the same as :attr:`path_table`.
            Each code of path is consisted with the code of nodes from leaf to root node. If `path_table` and
            `path_code` are None, the default tree will be used. Default is None.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating. If `is_sparse` is True,
            the gradient of `weight` and `input` will be sparse. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A tensor with the cost of hierarchical sigmoid, its shape is [N, 1] and data type is the same as `input`.

    Examples:
        .. code-block:: python

950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
            >>> import paddle
            >>> import paddle.nn.functional as F

            >>> paddle.set_device('cpu')
            >>> paddle.seed(2023)

            >>> input = paddle.uniform([4, 3])
            >>> print(input)
            Tensor(shape=[4, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
                    [[ 0.73167229,  0.04029441, -0.48078126],
                     [ 0.81050646, -0.15199822, -0.18717426],
                     [ 0.94041789,  0.48874724,  0.03570259],
                     [ 0.46585739,  0.95573163, -0.91368192]])
            >>> label = paddle.to_tensor([0, 1, 4, 5])
            >>> num_classes = 5
            >>> weight = paddle.uniform([num_classes - 1, 3])
            >>> print(weight)
            Tensor(shape=[4, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
                    [[-0.14721161,  0.43916738, -0.58377075],
                     [-0.60536981, -0.23151302, -0.70793629],
                     [-0.54572451, -0.10784978, -0.56684279],
                     [ 0.35370791, -0.07079649,  0.84765708]])
            >>> out = F.hsigmoid_loss(input, label, num_classes, weight)
            >>> print(out)
            Tensor(shape=[4, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
                    [[2.23681736],
                     [1.97140026],
                     [1.66425037],
                     [2.54727197]])

980
    """
L
Linjie Chen 已提交
981
    if num_classes < 2:
982
        raise ValueError(f'Expected num_classes >= 2 (got {num_classes})')
L
Linjie Chen 已提交
983

984
    if in_dynamic_mode():
985
        out, _, _ = _C_ops.hsigmoid_loss(
986 987
            input,
            label,
988 989
            weight,
            bias,
990 991 992 993 994 995
            path_table,
            path_code,
            num_classes,
            is_sparse,
            is_sparse,
        )
996
        return out
姜永久 已提交
997
    else:
998
        check_variable_and_dtype(
姜永久 已提交
999
            input, 'input', ['float32', 'float64'], 'hsigmoid_loss'
1000
        )
姜永久 已提交
1001
        check_variable_and_dtype(label, 'label', ['int64'], 'hsigmoid_loss')
1002
        check_variable_and_dtype(
姜永久 已提交
1003
            weight, 'weight', ['float32', 'float64'], 'hsigmoid_loss'
1004
        )
姜永久 已提交
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
        if bias is not None:
            check_variable_and_dtype(
                bias, 'bias', ['float32', 'float64'], 'hsigmoid_loss'
            )
        if path_table is not None:
            check_variable_and_dtype(
                path_table, 'path_table', ['int64'], 'hsigmoid_loss'
            )
        if path_code is not None:
            check_variable_and_dtype(
                path_code, 'path_code', ['int64'], 'hsigmoid_loss'
            )
1017

姜永久 已提交
1018 1019 1020 1021
        attrs = {
            "num_classes": num_classes,
            "is_sparse": is_sparse,
        }
1022

姜永久 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
        inputs = {
            "X": input,
            "W": weight,
            "Bias": bias,
            "PathTable": path_table,
            "PathCode": path_code,
            "Label": label,
        }

        helper = LayerHelper('hsigmoid_loss', **locals())
        out = helper.create_variable_for_type_inference(input.dtype)
        pre_out = helper.create_variable_for_type_inference(input.dtype)
        outputs = {"Out": out, "PreOut": pre_out, "W_Out": weight}

        helper.append_op(
            type="hierarchical_sigmoid",
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
        )
        return out
1044 1045


1046
def smooth_l1_loss(input, label, reduction='mean', delta=1.0, name=None):
1047
    r"""
1048
    Calculate smooth_l1_loss. Creates a criterion that uses a squared
1049 1050 1051 1052 1053 1054
    term if the absolute element-wise error falls below 1 and an L1 term otherwise.
    In some cases it can prevent exploding gradients and it is more robust and less
    sensitivity to outliers. Also known as the Huber loss:

    .. math::

1055
        loss(x,y) = \frac{1}{n}\sum_{i}z_i
1056 1057


1058
    where :math:`z_i` is given by:
1059 1060 1061

    .. math::

1062
        \mathop{z_i} = \left\{\begin{array}{rcl}
1063 1064 1065
                0.5(x_i - y_i)^2 & & {if |x_i - y_i| < \delta} \\
                \delta * |x_i - y_i| - 0.5 * \delta^2 & & {otherwise}
            \end{array} \right.
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is
            (N, C), where C is number of classes, and if shape is more than 2D, this
            is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label
            is the same as the shape of input.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
1079
        delta (float, optional): Specifies the hyperparameter :math:`\delta` to be used.
1080 1081 1082
            The value determines how large the errors need to be to use L1. Errors
            smaller than delta are minimized with L2. Parameter is ignored for
            negative/zero values. Default = 1.0
1083
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1084 1085

    Returns:
1086
        Tensor, The tensor variable storing the smooth_l1_loss of input and label.
1087 1088 1089 1090

    Examples:
        .. code-block:: python

1091 1092 1093 1094 1095 1096 1097 1098 1099
            >>> import paddle
            >>> paddle.seed(2023)

            >>> input = paddle.rand([3, 3]).astype('float32')
            >>> label = paddle.rand([3, 3]).astype('float32')
            >>> output = paddle.nn.functional.smooth_l1_loss(input, label)
            >>> print(output)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
                    0.08307374)
1100 1101 1102

    """

1103
    if in_dynamic_mode():
1104
        out = _C_ops.huber_loss(input, label, delta)
1105
    else:
1106
        check_variable_and_dtype(
C
co63oc 已提交
1107 1108 1109 1110
            input,
            'input',
            ['float16', 'float32', 'float64', 'uint16'],
            'smooth_l1_loss',
1111 1112
        )
        check_variable_and_dtype(
C
co63oc 已提交
1113 1114 1115 1116
            label,
            'label',
            ['float16', 'float32', 'float64', 'uint16'],
            'smooth_l1_loss',
1117
        )
1118 1119
        helper = LayerHelper('huber_loss', **locals())
        residual = helper.create_variable_for_type_inference(
1120 1121
            dtype=helper.input_dtype()
        )
1122
        out = helper.create_variable_for_type_inference(
1123 1124 1125 1126 1127 1128 1129 1130
            dtype=helper.input_dtype()
        )
        helper.append_op(
            type='huber_loss',
            inputs={'X': input, 'Y': label},
            outputs={'Out': out, 'Residual': residual},
            attrs={'delta': delta},
        )
1131 1132 1133 1134

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in smooth_l1_loss should be 'sum', 'mean' or"
1135 1136
            " 'none', but received %s, which is not allowed." % reduction
        )
1137 1138 1139
    if reduction == 'none':
        return out
    elif reduction == 'mean':
1140
        return paddle.mean(out)
1141
    elif reduction == 'sum':
1142
        return paddle.sum(out)
1143 1144


1145 1146 1147
def margin_ranking_loss(
    input, other, label, margin=0.0, reduction='mean', name=None
):
1148
    r"""
1149

1150
    Calcluate the margin rank loss between the input, other and label, use the math function as follows.
1151

1152
    .. math::
1153
        margin\_rank\_loss = max(0, -label * (input - other) + margin)
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        input(Tensor): the first input tensor, it's data type should be float32, float64.
        other(Tensor): the second input tensor, it's data type should be float32, float64.
1170
        label(Tensor): the label value corresponding to input, it's data type should be float32, float64.
1171 1172 1173 1174
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

1175
    Returns:
1176
        Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[]`, otherwise the shape is the same as `input` .The same dtype as input tensor.
1177 1178 1179 1180 1181

    Examples:

        .. code-block:: python

1182 1183 1184 1185 1186 1187 1188 1189 1190
            >>> import paddle

            >>> input = paddle.to_tensor([[1, 2], [3, 4]], dtype='float32')
            >>> other = paddle.to_tensor([[2, 1], [2, 4]], dtype='float32')
            >>> label = paddle.to_tensor([[1, -1], [-1, -1]], dtype='float32')
            >>> loss = paddle.nn.functional.margin_ranking_loss(input, other, label)
            >>> print(loss)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
                    0.75000000)
1191

1192
    """
1193 1194 1195
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but "
1196 1197
            "received %s, which is not allowed." % reduction
        )
1198
    if in_dynamic_mode():
1199 1200
        out = _C_ops.subtract(other, input)
        out = _C_ops.multiply(out, label)
1201 1202
        if margin != 0.0:
            margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype)
1203 1204
            out = _C_ops.add(out, margin)
        out = _C_ops.relu(out)
1205
        if reduction == 'sum':
1206
            return _C_ops.sum(out, [], None, False)
1207
        elif reduction == 'mean':
1208
            return _C_ops.mean_all(out)
1209
        return out
姜永久 已提交
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
    else:
        helper = LayerHelper("margin_ranking_loss", **locals())
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'margin_rank_loss'
        )
        check_variable_and_dtype(
            other, 'other', ['float32', 'float64'], 'margin_rank_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'margin_rank_loss'
        )
1221

姜永久 已提交
1222 1223 1224
        out = paddle.subtract(input, other)
        neg_label = paddle.neg(label)
        out = paddle.multiply(neg_label, out)
1225

姜永久 已提交
1226 1227 1228 1229 1230 1231
        if margin != 0.0:
            margin_var = out.block.create_var(dtype=out.dtype)
            margin_var = paddle.full(
                shape=[1], fill_value=margin, dtype=out.dtype
            )
            out = paddle.add(out, margin_var)
1232

姜永久 已提交
1233
        result_out = helper.create_variable_for_type_inference(input.dtype)
1234

姜永久 已提交
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
        if reduction == 'none':
            helper.append_op(
                type="relu", inputs={"X": out}, outputs={"Out": result_out}
            )
            return result_out
        elif reduction == 'sum':
            out = paddle.nn.functional.relu(out)
            attrs = {"dim": [0], "keep_dim": False, "reduce_all": True}
            helper.append_op(
                type="reduce_sum",
                inputs={"X": out},
                outputs={"Out": result_out},
                attrs=attrs,
            )
            return result_out
        elif reduction == 'mean':
            out = paddle.nn.functional.relu(out)
            helper.append_op(
                type="mean",
                inputs={"X": out},
                outputs={"Out": result_out},
                attrs={},
            )
            return result_out
1259 1260


1261
def l1_loss(input, label, reduction='mean', name=None):
1262
    r"""
1263

1264
    Computes the L1 Loss of Tensor ``input`` and ``label`` as follows.
1265

1266
    If `reduction` set to ``'none'``, the loss is:
1267 1268

    .. math::
1269
        Out = \lvert input - label \rvert
1270

1271
    If `reduction` set to ``'mean'``, the loss is:
1272 1273

    .. math::
1274
        Out = MEAN(\lvert input - label \rvert)
1275

1276
    If `reduction` set to ``'sum'``, the loss is:
1277 1278

    .. math::
1279
        Out = SUM(\lvert input - label \rvert)
1280

1281

1282
    Parameters:
N
Noel 已提交
1283 1284
        input (Tensor): The input tensor. The shapes is [N, `*`], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        label (Tensor): label. The shapes is [N, `*`], same shape as ``input`` . It's data type should be float32, float64, int32, int64.
1285
        reduction (str, optional): Indicate the reduction to apply to the loss,
1286
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
1287 1288 1289
            If `reduction` is ``'none'``, the unreduced loss is returned;
            If `reduction` is ``'mean'``, the reduced mean loss is returned.
            If `reduction` is ``'sum'``, the reduced sum loss is returned.
1290 1291
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
N
Noel 已提交
1292

1293
    Returns:
1294
        Tensor, the L1 Loss of Tensor ``input`` and ``label``.
1295
        If `reduction` is ``'none'``, the shape of output loss is :math:`[N, *]`, the same as ``input`` .
1296
        If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [].
N
Noel 已提交
1297

1298 1299
    Examples:
        .. code-block:: python
N
Noel 已提交
1300

1301
            >>> import paddle
1302

1303 1304
            >>> input = paddle.to_tensor([[1.5, 0.8], [0.2, 1.3]])
            >>> label = paddle.to_tensor([[1.7, 1], [0.4, 0.5]])
1305

1306 1307 1308 1309
            >>> l1_loss = paddle.nn.functional.l1_loss(input, label)
            >>> print(l1_loss)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
                    0.34999999)
1310

1311 1312 1313 1314 1315
            >>> l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='none')
            >>> print(l1_loss)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
                    [[0.20000005, 0.19999999],
                     [0.20000000, 0.79999995]])
1316

1317 1318 1319 1320
            >>> l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='sum')
            >>> print(l1_loss)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
                    1.39999998)
1321

1322 1323 1324 1325
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
1326 1327
            "received %s, which is not allowed." % reduction
        )
1328

1329
    if in_dynamic_mode():
1330 1331
        unreduced = _C_ops.abs(_C_ops.subtract(input, label))

1332
        if reduction == 'mean':
1333
            return _C_ops.mean_all(unreduced)
1334
        elif reduction == 'sum':
1335
            return _C_ops.sum(unreduced, [], None, False)
1336 1337
        else:
            return unreduced
姜永久 已提交
1338 1339
    else:
        check_variable_and_dtype(
1340 1341 1342 1343
            input,
            'input',
            ['float32', 'float64', 'int32', 'int64'],
            'l1_loss',
姜永久 已提交
1344 1345
        )
        check_variable_and_dtype(
1346 1347 1348 1349
            label,
            'label',
            ['float32', 'float64', 'int32', 'int64'],
            'l1_loss',
1350
        )
1351

姜永久 已提交
1352 1353 1354 1355 1356 1357 1358 1359
        if reduction == 'sum':
            unreduced = paddle.abs(paddle.subtract(x=input, y=label))
            return paddle.sum(unreduced, name=name)
        elif reduction == 'mean':
            unreduced = paddle.abs(paddle.subtract(x=input, y=label))
            return paddle.mean(unreduced, name=name)
        else:
            return paddle.abs(paddle.subtract(x=input, y=label, name=name))
1360 1361 1362 1363 1364


def nll_loss(
    input, label, weight=None, ignore_index=-100, reduction='mean', name=None
):
1365 1366
    """
    This api returns negative log likelihood.
1367 1368
    See more detail in :ref:`NLLLoss <api_paddle_nn_NLLLoss>` .

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379

    Parameters:
         input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
             But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
             The data type is float32, float64.
         label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
             The data type is int64.
         weight (Tensor, optional): Weight tensor, a manual rescaling weight given
             to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
             it treated as if having all ones. the data type is
             float32, float64, Default is ``'None'``.
1380 1381
         ignore_index (int, optional): Specifies a target value that is ignored
             and does not contribute to the input gradient. Default is -100.
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
         reduction (str, optional): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
         name (str, optional): Name for the operation (optional, default is None).
             For more information, please refer to :ref:`api_guide_Name`.

    Returns:
         `Tensor`, the value of negative log likelihood loss.

    Examples:
        .. code-block:: python
1396

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
            >>> import paddle
            >>> from paddle.nn.functional import nll_loss
            >>> log_softmax = paddle.nn.LogSoftmax(axis=1)

            >>> input = paddle.to_tensor([[0.88103855, 0.9908683 , 0.6226845 ],
            ...     [0.53331435, 0.07999352, 0.8549948 ],
            ...     [0.25879037, 0.39530203, 0.698465  ],
            ...     [0.73427284, 0.63575995, 0.18827209],
            ...     [0.05689114, 0.0862954 , 0.6325046 ]], "float32")
            >>> log_out = log_softmax(input)
            >>> label = paddle.to_tensor([0, 2, 1, 1, 0], "int64")
            >>> result = nll_loss(log_out, label)
            >>> print(result)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
                   1.07202101)

1413 1414 1415 1416
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
1417 1418
            "'none', but received %s, which is not allowed." % reduction
        )
1419 1420 1421

    input_shape = list(input.shape)
    input_dims = len(input_shape)
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
    label_shape = list(label.shape)
    label_dims = len(label_shape)

    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
            "Expected input_dims - 1 = label_dims or input_dims == label_dims\
             (got input_dims{}, label_dims{})".format(
                input_dims, label_dims
            )
        )

1433
    if input_dims < 2:
1434
        raise ValueError(f'Expected 2 or more dimensions (got {input_dims})')
1435 1436 1437 1438 1439 1440 1441 1442

    if input_shape[1] < 1:
        raise ValueError(
            "Expected 1 or more classess (got num classes{})".format(
                input_shape[1]
            )
        )

1443 1444
    n = input_shape[0]
    c = input_shape[1]
1445
    if in_dynamic_mode():
Z
zyfncg 已提交
1446
        if input_dims != 2 and input_dims != 4:
1447 1448
            input = _C_ops.reshape(input, [n, c, 1, -1])
            label = _C_ops.reshape(label, [n, 1, -1])
Z
zyfncg 已提交
1449
            out_shape = [n] + input_shape[2:]
1450 1451 1452
        out, total_weight = _C_ops.nll_loss(
            input, label, weight, ignore_index, reduction
        )
Z
zyfncg 已提交
1453
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
1454
            out = _C_ops.reshape(out, out_shape)
Z
zyfncg 已提交
1455
        return out
姜永久 已提交
1456 1457 1458
    else:
        helper = LayerHelper('nll_loss', **locals())

1459
        if input_dims != 2 and input_dims != 4:
姜永久 已提交
1460 1461
            input = reshape(input, shape=[n, c, 1, -1])
            label = reshape(label, shape=[n, 1, -1])
1462
            out_shape = [n] + input_shape[2:]
H
hong 已提交
1463

姜永久 已提交
1464 1465
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'nll_loss'
1466
        )
姜永久 已提交
1467 1468 1469 1470 1471 1472
        check_variable_and_dtype(label, 'label', ['int64'], 'nll_loss')
        inputs = {'X': input, 'Label': label}
        attrs = {'reduction': reduction, 'ignore_index': ignore_index}
        if weight is not None:
            if isinstance(weight, Variable):
                inputs['Weight'] = weight
1473

姜永久 已提交
1474 1475 1476 1477 1478
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        total_weight = helper.create_variable_for_type_inference(
            dtype=input.dtype
        )
        outputs = {'Out': out, 'Total_weight': total_weight}
1479

姜永久 已提交
1480 1481 1482 1483 1484
        helper.append_op(
            type='nll_loss', inputs=inputs, outputs=outputs, attrs=attrs
        )
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
            out = reshape(out, shape=out_shape)
1485

姜永久 已提交
1486
        return out
1487 1488


1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
def poisson_nll_loss(
    input,
    label,
    log_input=True,
    full=False,
    epsilon=1e-8,
    reduction="mean",
    name=None,
):
    r"""Poisson negative log likelihood loss.
    See more detail in :ref:`PoissonNLLLoss <api_paddle_nn_PoissonNLLLoss>` .

    Parameters:
         input (Tensor):
            Input tensor, expectation of underlying Poisson distribution.
            The shape of input tensor should be `(N, *)` or `(*)` where `(*)` denotes any number of extra dimensions.
            It's data type should be float16, bfloat16, float32, float64.
         label (Tensor):
            Label tensor, random sampled from Poisson distribution :math:`label \sim \text{Poisson}(input)`.
            The shape of input tensor should be `(N, *)` or `(*)`, same shape as the input tensor.
            It's data type should be float16, bfloat16, float32, float64.
         log_input (bool, optional):
            Whether to the treat input tensor as log input.
            If ``True`` the loss is computed as, :math:`\exp(\text{input}) - \text{label} * \text{input}` .
            If ``False`` then loss is :math:`\text{input} - \text{label} * \log(\text{input}+\text{epsilon})` .
            Default: ``True``.
         full (bool, optional):
            Whether to compute full loss.
            If ``True``, the Stirling approximation term is added.
            If ``False``, the Stirling approximation is dropped.
            Default: ``False``.
         epsilon (float, optional):
            A small value to avoid evaluation of :math:`\log(0)` when `log_input`\ =\ ``False``. ``epsilon > 0``.
            Default: 1e-8.
         reduction (str, optional):
            Indicate how to reduce the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If `reduction` is ``'mean'``, the reduced mean loss is returned;
            if `reduction` is ``'sum'``, the reduced sum loss is returned;
            if `reduction` is ``'none'``, no reduction will be apllied.
            Default is ``'mean'``.
         name (str, optional):
            Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Examples:
        .. code-block:: python

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
            >>> import paddle
            >>> import paddle.nn.functional as F
            >>> paddle.seed(2023)

            >>> input = paddle.randn([5, 2], dtype=paddle.float32)
            >>> label = paddle.randn([5, 2], dtype=paddle.float32)
            >>> loss = F.poisson_nll_loss(input, label, log_input=True, reduction='none')
            >>> print(loss)
            Tensor(shape=[5, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
                   [[ 1.09998012,  3.68829036],
                    [ 1.95291090,  0.69603068],
                    [-0.39289063, -2.03713036],
                    [ 4.52518702,  1.28625548],
                    [ 3.94454789,  0.53521496]])
            >>> loss = F.poisson_nll_loss(input, label, reduction='mean')
            >>> print(loss)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
                   1.52983975)
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607

    """
    # check parameter values
    if epsilon <= 0:
        raise ValueError(
            "The value of `epsilon` in poisson_nll_loss should be positve, but received %f, which is not allowed"
            % epsilon
        )

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in poisson_nll_loss should be 'sum', 'mean' or 'none', but "
            "received %s, which is not allowed." % reduction
        )
    # check input dtype and dimension
    check_variable_and_dtype(
        input,
        'input',
        ['float16', 'uint16', 'float32', 'float64'],
        'poisson_nll_loss',
    )
    check_variable_and_dtype(
        label,
        'label',
        ['float16', 'uint16', 'float32', 'float64'],
        'poisson_nll_loss',
    )

    if not (input.shape == label.shape):
        raise ValueError("input's shape must equal to label's shape")

    label = paddle.cast(label, input.dtype)
    loss_out = 0
    if log_input:
        loss_out = paddle.exp(input) - label * input
    else:
        loss_out = input - label * paddle.log(input + epsilon)
    if full:
        stirling_approx = (
            label * paddle.log(label)
            - label
            + 0.5 * paddle.log(2 * math.pi * label)
        )
        loss_out += paddle.where(
            stirling_approx <= 1,
            paddle.zeros_like(stirling_approx),
            stirling_approx,
        )
    if reduction == 'mean':
        loss_out = paddle.mean(loss_out)
    elif reduction == 'sum':
        loss_out = paddle.sum(loss_out)
    return loss_out


1608
def kl_div(input, label, reduction='mean', name=None):
1609
    r"""
1610
    Calculate the Kullback-Leibler divergence loss
1611 1612 1613 1614 1615 1616 1617
    between Input(X) and Input(Target). Notes that Input(X) is the
    log-probability and Input(Target) is the probability.

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

1618
    Here :math:`x` is input and :math:`y` is label.
1619

1620
    If `reduction` is ``'none'``, the output loss is the same shape as the input, and the loss at each point is calculated separately. There is no reduction to the result.
1621

1622
    If `reduction` is ``'mean'``, the output loss is the shape of [], and the output is the average of all losses.
1623

1624
    If `reduction` is ``'sum'``, the output loss is the shape of [], and the output is the sum of all losses.
1625

1626
    If `reduction` is ``'batchmean'``, the output loss is the shape of [N], N is the batch size, and the output is the sum of all losses divided by the batch size.
1627 1628

    Args:
1629
        input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means
1630
            any number of additional dimensions. It's data type should be float32, float64.
1631
        label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64.
1632 1633 1634 1635 1636 1637 1638
        reduction (str, optional): Indicate how to average the loss,
            the candicates are ``'none'`` | ``'batchmean'`` | ``'mean'`` | ``'sum'``.
            If `reduction` is ``'mean'``, the reduced mean loss is returned;
            If `reduction` is ``'batchmean'``, the sum loss divided by batch size is returned;
            if `reduction` is ``'sum'``, the reduced sum loss is returned;
            if `reduction` is ``'none'``, no reduction will be apllied.
            Default is ``'mean'``.
1639
        name(str, optional): Name for the operation (optional, default is None). For more information,
1640 1641 1642 1643 1644 1645 1646 1647
            please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The KL divergence loss. The data type is same as input tensor

    Examples:
        .. code-block:: python

1648 1649 1650
            >>> import paddle
            >>> import paddle.nn.functional as F
            >>> paddle.seed(2023)
1651

1652
            >>> shape = (5, 20)
L
LielinJiang 已提交
1653

1654 1655
            >>> # input(x) should be a distribution in the log space
            >>> x = F.log_softmax(paddle.randn(shape), axis=1).astype('float32')
L
LielinJiang 已提交
1656

1657
            >>> target = paddle.uniform(shape, min=-10, max=10).astype('float32')
1658

1659 1660 1661 1662
            >>> # 'batchmean' reduction, loss shape will be [], who is 0-D Tensor
            >>> pred_loss = F.kl_div(x, target, reduction='batchmean')
            >>> print(pred_loss.shape)
            []
1663

1664 1665 1666 1667
            >>> # 'mean' reduction, loss shape will be [], who is 0-D Tensor
            >>> pred_loss = F.kl_div(x, target, reduction='mean')
            >>> print(pred_loss.shape)
            []
1668

1669 1670 1671 1672
            >>> # 'sum' reduction, loss shape will be [], who is 0-D Tensor
            >>> pred_loss = F.kl_div(x, target, reduction='sum')
            >>> print(pred_loss.shape)
            []
1673

1674 1675 1676 1677
            >>> # 'none' reduction, loss shape is same with input shape
            >>> pred_loss = F.kl_div(x, target, reduction='none')
            >>> print(pred_loss.shape)
            [5, 20]
1678 1679

    """
L
LielinJiang 已提交
1680
    # ugly type promotion
1681 1682 1683 1684
    if (
        fluid.data_feeder.convert_dtype(input.dtype) == 'float32'
        and fluid.data_feeder.convert_dtype(label.dtype) == 'float64'
    ):
1685
        input = paddle.cast(input, 'float64')
1686 1687 1688 1689
    elif (
        fluid.data_feeder.convert_dtype(input.dtype) == 'float64'
        and fluid.data_feeder.convert_dtype(label.dtype) == 'float32'
    ):
1690
        label = paddle.cast(label, 'float64')
L
LielinJiang 已提交
1691

1692
    if in_dynamic_mode():
1693
        out = _C_ops.kldiv_loss(input, label, 'none')
1694 1695 1696 1697 1698 1699 1700 1701 1702
        if reduction == 'mean':
            out = paddle.mean(out)
        elif reduction == 'sum':
            out = paddle.sum(out)
        elif reduction == 'batchmean':
            if len(input.shape) > 0:
                batch_size = input.shape[0]
                out = paddle.sum(out) / batch_size
        return out
姜永久 已提交
1703 1704
    else:
        helper = LayerHelper('kl_div', **locals())
1705

姜永久 已提交
1706 1707 1708 1709 1710 1711 1712
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'kl_div'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'kl_div'
        )
        fluid.data_feeder.check_type(reduction, 'reduction', str, 'kl_div')
1713

姜永久 已提交
1714 1715 1716 1717 1718 1719 1720
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='kldiv_loss',
            inputs={'X': input, 'Target': label},
            outputs={'Loss': loss},
            attrs={'reduction': 'none'},
        )
1721

姜永久 已提交
1722 1723 1724 1725 1726 1727 1728 1729
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
        elif reduction == 'batchmean':
            batch_size = paddle.shape(input)[0]
            loss = paddle.sum(loss) / batch_size
        return loss
1730 1731


1732
def mse_loss(input, label, reduction='mean', name=None):
1733
    r"""
1734
    Accept input predications and label and returns the mean square error.
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

    Parameters:
        input (Tensor): Input tensor, the data type should be float32 or float64.
        label (Tensor): Label tensor, the data type should be float32 or float64.
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.


    Returns:
1764
        Tensor, The tensor tensor storing the mean square error difference of input and label.
1765

1766 1767 1768
    Examples:

        .. code-block:: python
1769

1770 1771 1772 1773 1774 1775 1776 1777
            >>> import paddle
            >>> mse_loss = paddle.nn.loss.MSELoss()
            >>> input = paddle.to_tensor(1.5)
            >>> label = paddle.to_tensor(1.7)
            >>> output = mse_loss(input, label)
            >>> print(output)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
                   0.04000002)
1778 1779 1780 1781 1782 1783

    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'mse_loss' should be 'sum', 'mean' or 'none', "
1784 1785
            "but received {}.".format(reduction)
        )
1786

Z
zhiboniu 已提交
1787
    if not in_dynamic_mode():
1788 1789 1790 1791 1792 1793
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'mse_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'mse_loss'
        )
1794 1795

    if reduction == 'none':
1796
        return paddle.square(paddle.subtract(input, label), name=name)
1797
    elif reduction == 'mean':
1798 1799 1800
        return paddle.mean(
            paddle.square(paddle.subtract(input, label)), name=name
        )
1801
    else:
1802 1803 1804
        return paddle.sum(
            paddle.square(paddle.subtract(input, label)), name=name
        )
1805 1806


1807 1808 1809 1810 1811 1812 1813 1814 1815
def ctc_loss(
    log_probs,
    labels,
    input_lengths,
    label_lengths,
    blank=0,
    reduction='mean',
    norm_by_times=False,
):
1816 1817
    """

1818 1819 1820
    An operator integrating the open source Warp-CTC library (https://github.com/baidu-research/warp-ctc)
    to compute Connectionist Temporal Classification (CTC) loss.
    It can be aliased as softmax with CTC, since a native softmax activation
1821 1822 1823
    is interated to the Warp-CTC library to normalize values for each row of the input tensor.

    Parameters:
1824
        log_probs (Tensor): The unscaled probability sequence with padding, which is a 3-D Tensor. The tensor shape is [max_logit_length, batch_size, num_classes + 1], where max_logit_length is the longest length of input logit sequence. The data type should be float32 or float64.
1825 1826 1827
        labels (Tensor): The ground truth sequence with padding, which must be a 3-D Tensor. The tensor shape is [batch_size, max_label_length], where max_label_length is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.
1828 1829 1830
        blank (int, optional): The blank label index of Connectionist Temporal Classification (CTC) loss, which is in the half-opened interval [0, num_classes + 1). The data type must be int32. Default: 0.
        reduction (str, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output loss will be divided by the label_lengths, and then return the mean of quotient; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default: ``'mean'``.
        norm_by_times (bool, optional): Whether to normalize the gradients by the number of time-step, which is also the sequence's length. There is no need to normalize the gradients if reduction mode is 'mean'. Default: False.
H
Hui Zhang 已提交
1831

1832
    Returns:
1833
        Tensor, The Connectionist Temporal Classification (CTC) loss between ``log_probs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is []. Data type is the same as ``log_probs``.
1834

1835 1836 1837 1838
    Examples:

        .. code-block:: python

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
            >>> # declarative mode
            >>> import paddle.nn.functional as F
            >>> import paddle
            >>> import numpy as np

            >>> # length of the longest logit sequence
            >>> max_seq_length = 4
            >>> #length of the longest label sequence
            >>> max_label_length = 3
            >>> # number of logit sequences
            >>> batch_size = 2
            >>> # class num
            >>> class_num = 3

            >>> log_probs = paddle.to_tensor(np.array([
            ...     [[4.17021990e-01, 7.20324516e-01, 1.14374816e-04],
            ...      [3.02332580e-01, 1.46755889e-01, 9.23385918e-02]],
            ...     [[1.86260208e-01, 3.45560730e-01, 3.96767467e-01],
            ...      [5.38816750e-01, 4.19194520e-01, 6.85219526e-01]],
            ...     [[2.04452246e-01, 8.78117442e-01, 2.73875929e-02],
            ...      [6.70467496e-01, 4.17304814e-01, 5.58689833e-01]],
            ...     [[1.40386939e-01, 1.98101491e-01, 8.00744593e-01],
            ...      [9.68261600e-01, 3.13424170e-01, 6.92322612e-01]],
            ...     [[8.76389146e-01, 8.94606650e-01, 8.50442126e-02],
            ...      [3.90547849e-02, 1.69830427e-01, 8.78142476e-01]]
            ... ]), dtype="float32")
            >>> labels = paddle.to_tensor([[1, 2, 2],
            ...     [1, 2, 2]], dtype="int32")
            >>> input_lengths = paddle.to_tensor([5, 5], dtype="int64")
            >>> label_lengths = paddle.to_tensor([3, 3], dtype="int64")

            >>> loss = F.ctc_loss(log_probs, labels,
            ...     input_lengths,
            ...     label_lengths,
            ...     blank=0,
            ...     reduction='none')
            >>> print(loss)
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
                   [3.91798496, 2.90765190])

            >>> loss = F.ctc_loss(log_probs, labels,
            ...     input_lengths,
            ...     label_lengths,
            ...     blank=0,
            ...     reduction='mean')
            >>> print(loss)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
                   1.13760614)
1887 1888 1889

    """

1890 1891 1892 1893 1894 1895 1896 1897
    def warpctc(
        input,
        label,
        blank=0,
        norm_by_times=False,
        input_length=None,
        label_length=None,
    ):
1898
        if in_dynamic_mode():
1899 1900 1901 1902 1903 1904 1905 1906
            if input_length is None or label_length is None:
                raise ValueError(
                    "input_length and label_length must not be None in dygraph mode!"
                )
            loss_out = _C_ops.warpctc(
                input, label, input_length, label_length, blank, norm_by_times
            )
            return loss_out
姜永久 已提交
1907 1908
        else:
            helper = LayerHelper('warpctc', **locals())
1909
            check_variable_and_dtype(
姜永久 已提交
1910
                input, 'input', ['float32', 'float64'], "warpctc"
1911
            )
姜永久 已提交
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
            check_variable_and_dtype(label, 'label', ['int32'], "warpctc")
            this_inputs = {'Logits': [input], 'Label': [label]}
            if input_length is not None and label_length is not None:
                check_variable_and_dtype(
                    input_length, 'LogitsLength', ['int64'], "warpctc"
                )
                check_variable_and_dtype(
                    label_length, 'LabelLength', ['int64'], "warpctc"
                )
                this_inputs['LogitsLength'] = [input_length]
                this_inputs['LabelLength'] = [label_length]
1923

姜永久 已提交
1924 1925 1926 1927 1928 1929
            loss_out = helper.create_variable_for_type_inference(
                dtype=input.dtype
            )
            grad_out = helper.create_variable_for_type_inference(
                dtype=input.dtype
            )
1930

姜永久 已提交
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
            helper.append_op(
                type='warpctc',
                inputs=this_inputs,
                outputs={'WarpCTCGrad': [grad_out], 'Loss': [loss_out]},
                attrs={
                    'blank': blank,
                    'norm_by_times': norm_by_times,
                },
            )
            return loss_out
1941 1942

    loss_out = warpctc(
1943 1944
        log_probs, labels, blank, norm_by_times, input_lengths, label_lengths
    )
1945

Z
zhiboniu 已提交
1946
    loss_out = paddle.squeeze(loss_out, [-1])
1947 1948
    assert reduction in ['mean', 'sum', 'none']
    if reduction == 'mean':
S
ShenLiang 已提交
1949
        loss_out = paddle.mean(loss_out / label_lengths)
1950 1951 1952
    elif reduction == 'sum':
        loss_out = paddle.sum(loss_out)
    return loss_out
H
Hui Zhang 已提交
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969


def rnnt_loss(
    input,
    label,
    input_lengths,
    label_lengths,
    blank=0,
    fastemit_lambda=0.001,
    reduction='mean',
    name=None,
):
    """
    An operator integrating the open source Warp-Transducer library (https://github.com/b-flo/warp-transducer.git)
    to compute Sequence Transduction with Recurrent Neural Networks (RNN-T) loss.

    Parameters:
C
cyberslack_lee 已提交
1970
        input (Tensor): The logprobs sequence with padding, which is a 4-D Tensor. The tensor shape is [B, Tmax, Umax, D], where Tmax is the longest length of input logit sequence. The data type should be float32 or float64.
H
Hui Zhang 已提交
1971 1972 1973 1974 1975 1976 1977 1978 1979
        label (Tensor): The ground truth sequence with padding, which must be a 2-D Tensor. The tensor shape is [B, Umax], where Umax is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.
        blank (int, optional): The blank label index of RNN-T loss, which is in the half-opened interval [0, B). The data type must be int32. Default is 0.
        fastemit_lambda (float, default 0.001): Regularization parameter for FastEmit (https://arxiv.org/pdf/2010.11148.pdf)
        reduction (string, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output will be sum of loss and be divided by the batch_size; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1980
        Tensor, The RNN-T loss between ``logprobs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is []. Data type is the same as ``logprobs``.
H
Hui Zhang 已提交
1981 1982 1983 1984 1985

    Examples:

        .. code-block:: python

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
            >>> # declarative mode
            >>> import paddle.nn.functional as F
            >>> import numpy as np
            >>> import paddle
            >>> import functools

            >>> fn = functools.partial(F.rnnt_loss, reduction='sum', fastemit_lambda=0.0, blank=0)

            >>> acts = np.array([[
            ...     [[0.1, 0.6, 0.1, 0.1, 0.1],
            ...      [0.1, 0.1, 0.6, 0.1, 0.1],
            ...      [0.1, 0.1, 0.2, 0.8, 0.1]],
            ...     [[0.1, 0.6, 0.1, 0.1, 0.1],
            ...      [0.1, 0.1, 0.2, 0.1, 0.1],
            ...      [0.7, 0.1, 0.2, 0.1, 0.1]]
            ... ]])
            >>> labels = [[1, 2]]

            >>> acts = paddle.to_tensor(acts, stop_gradient=False)

            >>> lengths = [acts.shape[1]] * acts.shape[0]
            >>> label_lengths = [len(l) for l in labels]
            >>> labels = paddle.to_tensor(labels, paddle.int32)
            >>> lengths = paddle.to_tensor(lengths, paddle.int32)
            >>> label_lengths = paddle.to_tensor(label_lengths, paddle.int32)

            >>> costs = fn(acts, labels, lengths, label_lengths)
            >>> print(costs)
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False,
                   -2.85042444)

H
Hui Zhang 已提交
2017 2018 2019 2020 2021
    """

    def warprnnt(
        input, label, input_length, label_length, blank=0, fastemit_lambda=0.001
    ):
2022
        if in_dynamic_mode():
H
Hui Zhang 已提交
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
            loss_out = _C_ops.warprnnt(
                input,
                label,
                input_length,
                label_length,
                blank,
                fastemit_lambda,
            )
            return loss_out
        helper = LayerHelper('warprnnt', **locals())
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], "warprnnt"
        )
        check_variable_and_dtype(label, 'label', ['int32'], "warprnnt")
        check_variable_and_dtype(
            input_length, 'input_lengths', ['int32'], "warprnnt"
        )
        check_variable_and_dtype(
            label_length, 'label_lengths', ['int32'], "warprnnt"
        )
        this_inputs = {
            'input': [input],
            'label': [label],
            'input_lengths': [input_length],
            'label_lengths': [label_length],
        }

        loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
        grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)

        helper.append_op(
            type='warprnnt',
            inputs=this_inputs,
            outputs={'warprnntgrad': [grad_out], 'loss': [loss_out]},
            attrs={
                'blank': blank,
                'fastemit_lambda': fastemit_lambda,
            },
        )
        return loss_out

    B = input.shape[0]

    # NOTE manually done log_softmax for CPU version,
    # log_softmax is computed within GPU version.

    # (B,)
    loss_out = warprnnt(
        input, label, input_lengths, label_lengths, blank, fastemit_lambda
    )

    assert reduction in ['mean', 'sum', 'none']
    if reduction == 'mean':
        loss_out = paddle.sum(loss_out, name=name) / B
    elif reduction == 'sum':
        loss_out = paddle.sum(loss_out, name=name)
    return loss_out
2080 2081


2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
def margin_cross_entropy(
    logits,
    label,
    margin1=1.0,
    margin2=0.5,
    margin3=0.0,
    scale=64.0,
    group=None,
    return_softmax=False,
    reduction='mean',
):
2093
    r"""
2094 2095
    .. math::

2096
        L=-\frac{1}{N}\sum^N_{i=1}\log\frac{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}}{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}+\sum^n_{j=1,j\neq y_i} e^{scos\theta_{y_i}}}
2097

2098
    where the :math:`\theta_{y_i}` is the angle between the feature :math:`x` and
2099 2100 2101 2102
    the representation of class :math:`i`. The details of ArcFace loss
    could be referred to https://arxiv.org/abs/1801.07698.

    .. hint::
2103 2104 2105 2106
        The API supports single GPU and multi GPU, and don't supports CPU.
        For data parallel mode, set ``group=False``.
        For model parallel mode, set ``group=None`` or the group instance return by paddle.distributed.new_group.
        And logits.shape[-1] can be different at each rank.
2107 2108

    Args:
G
Guoxia Wang 已提交
2109
        logits (Tensor): shape[N, local_num_classes], the output of the normalized X multiply the normalized W.
2110
                The logits is shard_logits when using model parallel.
G
Guoxia Wang 已提交
2111 2112 2113 2114 2115
        label (Tensor): shape[N] or shape[N, 1], the groud truth label.
        margin1 (float, optional): m1 of margin loss, default value is `1.0`.
        margin2 (float, optional): m2 of margin loss, default value is `0.5`.
        margin3 (float, optional): m3 of margin loss, default value is `0.0`.
        scale (float, optional): s of margin loss, default value is `64.0`.
2116
        group (Group, optional): The group instance return by paddle.distributed.new_group
2117 2118
            or ``None`` for global default group or ``False`` for data parallel (do not communication cross ranks).
            Default is ``None``.
2119 2120 2121 2122 2123 2124 2125 2126
        return_softmax (bool, optional): Whether return softmax probability. Default value is `False`.
        reduction (str, optional): The candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                    If :attr:`reduction` is ``'mean'``, return the average of loss;
                    If :attr:`reduction` is ``'sum'``, return the sum of loss;
                    If :attr:`reduction` is ``'none'``, no reduction will be applied.
                    Default value is `'mean'`.

    Returns:
2127 2128 2129 2130 2131
        Tensor|tuple[Tensor, Tensor], return the cross entropy loss if
            `return_softmax` is False, otherwise the tuple (loss, softmax),
            softmax is shard_softmax when using model parallel, otherwise
            softmax is in the same shape with input logits. If
            ``reduction == None``, the shape of loss is ``[N, 1]``, otherwise
2132
            the shape is ``[]``.
2133 2134 2135

    Examples:

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
        .. code-block:: python
            :name: code-example1

            >>> # doctest: +REQUIRES(env:GPU)
            >>> import paddle
            >>> paddle.seed(2023)
            >>> paddle.device.set_device('gpu')
            >>> m1 = 1.0
            >>> m2 = 0.5
            >>> m3 = 0.0
            >>> s = 64.0
            >>> batch_size = 2
            >>> feature_length = 4
            >>> num_classes = 4

            >>> label = paddle.randint(low=0, high=num_classes, shape=[batch_size], dtype='int64')

            >>> X = paddle.randn(
            ...     shape=[batch_size, feature_length],
            ...     dtype='float64')
            >>> X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
            >>> X = paddle.divide(X, X_l2)

            >>> W = paddle.randn(
            ...     shape=[feature_length, num_classes],
            ...     dtype='float64')
            >>> W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
            >>> W = paddle.divide(W, W_l2)

            >>> logits = paddle.matmul(X, W)
            >>> loss, softmax = paddle.nn.functional.margin_cross_entropy(
            ...     logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)
            >>> print(logits)
            Tensor(shape=[2, 4], dtype=float64, place=Place(gpu:0), stop_gradient=True,
                   [[-0.59561850,  0.32797505,  0.80279214,  0.00144975],
                    [-0.16265212,  0.84155098,  0.62008629,  0.79126072]])
            >>> print(label)
            Tensor(shape=[2], dtype=int64, place=Place(gpu:0), stop_gradient=True,
                   [1, 0])
            >>> print(loss)
            Tensor(shape=[2, 1], dtype=float64, place=Place(gpu:0), stop_gradient=True,
                   [[61.94391901],
                    [93.30853839]])
            >>> print(softmax)
            Tensor(shape=[2, 4], dtype=float64, place=Place(gpu:0), stop_gradient=True,
                   [[0.00000000, 0.00000000, 1.        , 0.00000000],
                    [0.00000000, 0.96152676, 0.00000067, 0.03847257]])

        .. code-block:: python
            :name: code-example2

            >>> # doctest: +REQUIRES(env:DISTRIBUTED)
            >>> # Multi GPU, test_margin_cross_entropy.py
            >>> import paddle
            >>> import paddle.distributed as dist
            >>> paddle.seed(2023)
            >>> strategy = dist.fleet.DistributedStrategy()
            >>> dist.fleet.init(is_collective=True, strategy=strategy)
            >>> rank_id = dist.get_rank()
            >>> m1 = 1.0
            >>> m2 = 0.5
            >>> m3 = 0.0
            >>> s = 64.0
            >>> batch_size = 2
            >>> feature_length = 4
            >>> num_class_per_card = [4, 8]
            >>> num_classes = paddle.sum(paddle.to_tensor(num_class_per_card))

            >>> label = paddle.randint(low=0, high=num_classes.item(), shape=[batch_size], dtype='int64')
            >>> label_list = []
            >>> dist.all_gather(label_list, label)
            >>> label = paddle.concat(label_list, axis=0)

            >>> X = paddle.randn(
            ...     shape=[batch_size, feature_length],
            ...     dtype='float64')
            >>> X_list = []
            >>> dist.all_gather(X_list, X)
            >>> X = paddle.concat(X_list, axis=0)
            >>> X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
            >>> X = paddle.divide(X, X_l2)

            >>> W = paddle.randn(
            ...     shape=[feature_length, num_class_per_card[rank_id]],
            ...     dtype='float64')
            >>> W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
            >>> W = paddle.divide(W, W_l2)

            >>> logits = paddle.matmul(X, W)
            >>> loss, softmax = paddle.nn.functional.margin_cross_entropy(
            ...     logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)
            >>> print(logits)
            >>> print(label)
            >>> print(loss)
            >>> print(softmax)

            >>> # python -m paddle.distributed.launch --gpus=0,1 --log_dir log test_margin_cross_entropy.py
            >>> # cat log/workerlog.0
            >>> # Tensor(shape=[4, 4], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            >>> #        [[-0.59561850,  0.32797505,  0.80279214,  0.00144975],
            >>> #         [-0.16265212,  0.84155098,  0.62008629,  0.79126072],
            >>> #         [-0.59561850,  0.32797505,  0.80279214,  0.00144975],
            >>> #         [-0.16265212,  0.84155098,  0.62008629,  0.79126072]])
            >>> # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            >>> #        [5, 4, 5, 4])
            >>> # Tensor(shape=[4, 1], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            >>> #        [[104.27437027],
            >>> #         [113.40243782],
            >>> #         [104.27437027],
            >>> #         [113.40243782]])
            >>> # Tensor(shape=[4, 4], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            >>> #        [[0.00000000, 0.00000000, 0.01210039, 0.00000000],
            >>> #         [0.00000000, 0.96152674, 0.00000067, 0.03847257],
            >>> #         [0.00000000, 0.00000000, 0.01210039, 0.00000000],
            >>> #         [0.00000000, 0.96152674, 0.00000067, 0.03847257]])
            >>> # cat log/workerlog.1
            >>> # Tensor(shape=[4, 8], dtype=float64, place=Place(gpu:1), stop_gradient=True,
            >>> #        [[-0.34913275, -0.35180883, -0.53976657, -0.75234331,  0.70534995,
            >>> #           0.87157838,  0.31064437,  0.19537700],
            >>> #         [-0.63941012, -0.05631600, -0.02561853,  0.09363013,  0.56571130,
            >>> #           0.13611246,  0.08849565,  0.39219619],
            >>> #         [-0.34913275, -0.35180883, -0.53976657, -0.75234331,  0.70534995,
            >>> #           0.87157838,  0.31064437,  0.19537700],
            >>> #         [-0.63941012, -0.05631600, -0.02561853,  0.09363013,  0.56571130,
            >>> #           0.13611246,  0.08849565,  0.39219619]])
            >>> # Tensor(shape=[4], dtype=int64, place=Place(gpu:1), stop_gradient=True,
            >>> #        [5, 4, 5, 4])
            >>> # Tensor(shape=[4, 1], dtype=float64, place=Place(gpu:1), stop_gradient=True,
            >>> #        [[104.27437027],
            >>> #         [113.40243782],
            >>> #         [104.27437027],
            >>> #         [113.40243782]])
            >>> # Tensor(shape=[4, 8], dtype=float64, place=Place(gpu:1), stop_gradient=True,
            >>> #        [[0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00002368, 0.98787593,
            >>> #          0.00000000, 0.00000000],
            >>> #         [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000002, 0.00000000,
            >>> #          0.00000000, 0.00000000],
            >>> #         [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00002368, 0.98787593,
            >>> #          0.00000000, 0.00000000],
            >>> #         [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000002, 0.00000000,
            >>> #          0.00000000, 0.00000000]])

2278 2279 2280
    """

    assert reduction in ['mean', 'sum', 'none', None]
2281
    if not (group is False or group is None or hasattr(group, 'is_member')):
2282 2283
        raise ValueError(
            'Expected group is False, None or instance of paddle.distributed.collective.Group \
2284 2285 2286 2287
             (got group: {})'.format(
                group
            )
        )
2288 2289 2290
        return

    if hasattr(group, 'is_member') and not group.is_member():
2291 2292
        return

2293
    ring_id = 0
2294 2295
    rank = 0
    nranks = 1
2296
    if group is not False:
2297 2298 2299 2300
        ring_id = 0 if group is None else group.id
        if core.is_compiled_with_dist():
            parallel_env = paddle.distributed.ParallelEnv()
            global_rank = parallel_env.rank
2301 2302 2303 2304 2305
            rank = (
                global_rank
                if group is None
                else group.get_group_rank(global_rank)
            )
2306
            nranks = parallel_env.world_size if group is None else group.nranks
2307 2308 2309 2310 2311

    input_dims = len(list(logits.shape))
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
2312
            'Expected input_dims - 1 = label_dims or input_dims == label_dims\
2313
             (got input_dims{}, label_dims{})'.format(
2314 2315 2316
                input_dims, label_dims
            )
        )
2317 2318 2319
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=-1)

2320
    if in_dynamic_mode():
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
        softmax, loss = _C_ops.margin_cross_entropy(
            logits,
            label,
            return_softmax,
            ring_id,
            rank,
            nranks,
            margin1,
            margin2,
            margin3,
            scale,
        )
2333 2334 2335 2336 2337 2338 2339 2340
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
        if not return_softmax:
            return loss
        else:
            return loss, softmax
姜永久 已提交
2341 2342 2343 2344 2345 2346 2347
    else:
        op_type = 'margin_cross_entropy'
        helper = LayerHelper(op_type, **locals())
        softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
        loss = helper.create_variable_for_type_inference(dtype=logits.dtype)

        check_variable_and_dtype(
2348
            logits,
姜永久 已提交
2349 2350 2351
            'logits',
            ['float16', 'float32', 'float64'],
            'margin_cross_entropy',
2352
        )
姜永久 已提交
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
        check_variable_and_dtype(
            label, 'label', ['int32', 'int64'], 'margin_cross_entropy'
        )

        helper.append_op(
            type=op_type,
            inputs={'Logits': logits, 'Label': label},
            outputs={'Softmax': softmax, 'Loss': loss},
            attrs={
                'return_softmax': return_softmax,
                'ring_id': ring_id,
                'rank': rank,
                'nranks': nranks,
                'margin1': margin1,
                'margin2': margin2,
                'margin3': margin3,
                'scale': scale,
            },
        )

2373 2374 2375 2376
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
姜永久 已提交
2377

2378 2379 2380 2381 2382 2383
        if not return_softmax:
            return loss
        else:
            return loss, softmax


2384 2385 2386 2387
@deprecated(
    since="2.0.0",
    update_to="paddle.nn.functional.cross_entropy",
    level=1,
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
    reason=(
        'Please notice that behavior of "paddle.nn.functional.softmax_with_cross_entropy" '
        'and "paddle.nn.functional.cross_entropy" is different.'
    ),
)
def softmax_with_cross_entropy(
    logits,
    label,
    soft_label=False,
    ignore_index=-100,
    numeric_stable_mode=True,
    return_softmax=False,
    axis=-1,
):
2402
    r"""
2403 2404
    This operator implements the cross entropy loss function with softmax. This function
    combines the calculation of the softmax operation and the cross entropy loss function
2405 2406 2407 2408 2409 2410
    to provide a more numerically stable gradient.

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.

2411 2412 2413
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators
    expects mutually exclusive hard labels, each sample in a batch is in exactly
    one class with a probability of 1.0. Each sample in the batch will have a
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
    single label.

    The equation is as follows:

    1) Hard label (one-hot label, so every sample has exactly one class)

    .. math::
        \\loss_j=-\text{logits}_{label_j} +\log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right), j = 1,..., K

    2) Soft label (each sample can have a distribution over all classes)

    .. math::
        \\loss_j= -\sum_{i=0}^{K}\text{label}_i\left(\text{logits}_i - \log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right)\right), j = 1,...,K

    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:

    .. math::
        \\max_j&=\max_{i=0}^{K}{\text{logits}_i} \\
                log\_max\_sum_j &= \log\sum_{i=0}^{K}\exp(logits_i - max_j)\\
                softmax_j &= \exp(logits_j - max_j - {log\_max\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

    Args:
        logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
        label (Tensor): The ground truth  ``Tensor`` , data type is the same
2440 2441 2442
            as the ``logits`` . If :attr:`soft_label` is set to :attr:`True`,
            Label is a ``Tensor``  in the same shape with :attr:`logits`.
            If :attr:`soft_label` is set to :attr:`True`, Label is a ``Tensor``
2443 2444 2445 2446 2447
            in the same shape with :attr:`logits` expect shape in dimension :attr:`axis` as 1.
        soft_label (bool, optional): A flag to indicate whether to interpretant the given
            labels as soft labels. Default False.
        ignore_index (int, optional): Specifies a target value that is ignored and does
                                      not contribute to the input gradient. Only valid
2448
                                      if :attr:`soft_label` is set to :attr:`False`.
2449 2450 2451
                                      Default: kIgnoreIndex(-100).
        numeric_stable_mode (bool, optional): A flag to indicate whether to use a more
                                              numerically stable algorithm. Only valid
2452 2453 2454
                                              when :attr:`soft_label` is :attr:`False`
                                              and GPU is used. When :attr:`soft_label`
                                              is :attr:`True` or CPU is used, the
2455 2456 2457 2458 2459
                                              algorithm is always numerically stable.
                                              Note that the speed may be slower when use
                                              stable algorithm. Default: True.
        return_softmax (bool, optional): A flag indicating whether to return the softmax
                                         along with the cross entropy loss. Default: False.
2460
        axis (int, optional): The index of dimension to perform softmax calculations. It
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
                              should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                              is the rank of input :attr:`logits`. Default: -1.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
                                                    `return_softmax` is False, otherwise the tuple \
                                                    (loss, softmax), softmax is in the same shape \
                                                    with input logits and cross entropy loss is in \
                                                    the same shape with input logits except shape \
                                                    in dimension :attr:`axis` as 1.

    Examples:
        .. code-block:: python

2475 2476 2477 2478
            >>> import paddle

            >>> logits = paddle.to_tensor([0.4, 0.6, 0.9], dtype="float32")
            >>> label = paddle.to_tensor([1], dtype="int64")
2479

2480 2481 2482 2483
            >>> out = paddle.nn.functional.softmax_with_cross_entropy(logits=logits, label=label)
            >>> print(out)
            Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
                   [1.15328646])
2484

2485
    """
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
    return fluid_softmax_with_cross_entropy(
        logits,
        label,
        soft_label,
        ignore_index,
        numeric_stable_mode,
        return_softmax,
        axis,
    )


def cross_entropy(
    input,
    label,
    weight=None,
    ignore_index=-100,
    reduction='mean',
    soft_label=False,
    axis=-1,
    use_softmax=True,
    name=None,
):
2508
    r"""
2509

2510
    By default, the cross entropy loss function is implemented using softmax. This function
2511 2512
    combines the calculation of the softmax operation and the cross entropy loss function
    to provide a more numerically stable computing.
2513

2514
    Calculate the cross entropy loss function without softmax when use_softmax=False.
2515

2516
    By default, calculate the mean of the result, and you can also affect
2517
    the default behavior by using the reduction parameter. Please refer to the part of
2518
    parameters for details.
2519

2520
    Can be used to calculate the softmax cross entropy loss with soft and hard labels.
2521
    Where, the hard labels mean the actual label value, 0, 1, 2, etc.  And the soft labels
2522
    mean the probability of the actual label, 0.6, 0.8, 0.2, etc.
2523

2524
    The calculation includes the following two steps.
2525

2526
    - **1.softmax cross entropy**
2527

2528
        1. Hard label (each sample can only be assigned into one category)
2529

2530
        1.1. when use_softmax=True
2531

2532 2533
            .. math::
              \\loss_j=-\text{logits}_{label_j}+\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right) , j = 1,...,N
2534

2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
            where, N is the number of samples and C is the number of categories.

        1.2. when use_softmax=False

            .. math::
              \\loss_j=-\log\left({P}_{label_j}\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).


        2. Soft label (each sample is assigned to multiple categories with a certain probability, and the probability sum is 1).

        2.1. when use_softmax=True

            .. math::
              \\loss_j=-\sum_{i=0}^{C}\text{label}_i\left(\text{logits}_i-\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories.

        2.2. when use_softmax=False

            .. math::
              \\loss_j=-\sum_{j=0}^{C}\left({label}_j*\log\left({P}_{label_j}\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).




    - **2. Weight and reduction processing**

        1. Weight

            If the ``weight`` parameter is ``None`` , go to the next step directly.

            If the ``weight`` parameter is not ``None`` , the cross entropy of each sample is weighted by weight
            according to soft_label = False or True as follows.

            1.1. Hard labels (soft_label = False)

            .. math::
2576
                \\loss_j=loss_j*weight[label_j]
2577

2578

2579 2580 2581 2582 2583 2584 2585
            1.2. Soft labels (soft_label = True)

             .. math::
                \\loss_j=loss_j*\sum_{i}\left(weight[label_i]*logits_i\right)

        2. reduction

2586
            2.1 if the ``reduction`` parameter is ``none``
2587 2588 2589

                Return the previous result directly

2590
            2.2 if the ``reduction`` parameter is ``sum``
2591 2592 2593 2594 2595 2596

                Return the sum of the previous results

            .. math::
               \\loss=\sum_{j}loss_j

2597 2598
            2.3 if the ``reduction`` parameter is ``mean`` , it will be processed according to
            the ``weight`` parameter as follows.
2599

2600
            2.3.1. If the  ``weight``  parameter is ``None``
2601 2602 2603

                   Return the average value of the previous results

2604
            .. math::
2605 2606 2607 2608 2609 2610 2611 2612
                \\loss=\sum_{j}loss_j/N

                  where, N is the number of samples and C is the number of categories.

            2.3.2. If the 'weight' parameter is not 'None', the weighted average value of the previous result will be returned

            1. Hard labels (soft_label = False)

2613
            .. math::
2614
                \\loss=\sum_{j}loss_j/\sum_{j}weight[label_j]
2615 2616 2617

            2. Soft labels (soft_label = True)

2618
            .. math::
2619
                \\loss=\sum_{j}loss_j/\sum_{j}\left(\sum_{i}weight[label_i]\right)
2620 2621


2622
    Parameters:
2623
        input (Tensor): the data type is float32, float64. Shape is :math:`[N_1, N_2, ..., N_k, C]`, where C is number of classes, ``k >= 1`` .
2624

2625
            Note:
2626
                1. when use_softmax=True, it expects unscaled logits. This operator should not be used with the output of softmax operator, which will produce incorrect results.
2627
                2. when use_softmax=False, it expects the output of softmax operator.
2628

2629
        label (Tensor):
2630 2631 2632 2633
            1. If soft_label=False, the shape is
            :math:`[N_1, N_2, ..., N_k]` or :math:`[N_1, N_2, ..., N_k, 1]`, k >= 1.
            the data type is int32, int64, float32, float64, where each value is [0, C-1].

2634
            2. If soft_label=True, the shape and data type should be same with ``input`` ,
2635 2636
            and the sum of the labels for each sample should be 1.

2637
        weight (Tensor, optional): a manual rescaling weight given to each class.
2638
            If given, has to be a Tensor of size C and the data type is float32, float64.
2639
            Default is ``'None'`` .
2640
        ignore_index (int64, optional): Specifies a target value that is ignored
2641 2642
            and does not contribute to the loss. A negative value means that no label
            value needs to be ignored. Only valid when soft_label = False.
2643
            Default is ``-100`` .
2644
        reduction (str, optional): Indicate how to average the loss by batch_size,
2645 2646
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
H
Hui Zhang 已提交
2647
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
2648 2649
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
2650 2651
        soft_label (bool, optional): Indicate whether label is soft. Default is ``False``.
        axis (int, optional):The index of dimension to perform softmax calculations.
2652 2653
            It should be in range :math:`[-1, rank - 1]`, where :math:`rank` is the
            number of dimensions of input :attr:`input`.
2654
            Default is ``-1`` .
2655
        use_softmax (bool, optional): Indicate whether compute softmax before cross_entropy.
2656
            Default is ``True``.
2657
        name (str, optional): The name of the operator. Default is ``None`` .
2658
            For more information, please refer to :ref:`api_guide_Name` .
2659 2660 2661

    Returns:

2662 2663
        Tensor. Return the softmax cross_entropy loss of ``input`` and ``label``.
        The data type is the same as input.
2664

2665
        If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the dimension of return value is ``1``.
2666

2667
        If :attr:`reduction` is ``'none'``:
C
Chen Long 已提交
2668

2669
        1. If soft_label = False, the dimension of return value is the same with ``label`` .
C
Chen Long 已提交
2670

2671
        2. if soft_label = True, the dimension of return value is :math:`[N_1, N_2, ..., N_k, 1]` .
2672

2673
    Examples:
2674
        .. code-block:: python
2675

2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
            >>> # hard labels
            >>> import paddle
            >>> paddle.seed(99999)
            >>> N=100
            >>> C=200
            >>> reduction='mean'
            >>> input =  paddle.rand([N, C], dtype='float64')
            >>> label =  paddle.randint(0, C, shape=[N], dtype='int64')
            >>> weight = paddle.rand([C], dtype='float64')

            >>> cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
            ...     weight=weight, reduction=reduction)
            >>> dy_ret = cross_entropy_loss(
            ...                             input,
            ...                             label)
            >>> print(dy_ret)
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True,
                   5.35419278)
2694 2695

        .. code-block:: python
2696

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
            >>> # soft labels
            >>> import paddle
            >>> paddle.seed(99999)
            >>> axis = -1
            >>> ignore_index = -100
            >>> N = 4
            >>> C = 3
            >>> shape = [N, C]
            >>> reduction='mean'
            >>> weight = None
            >>> logits = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            >>> labels = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            >>> labels /= paddle.sum(labels, axis=axis, keepdim=True)
            >>> paddle_loss_mean = paddle.nn.functional.cross_entropy(
            ...                                                         logits,
            ...                                                         labels,
            ...                                                         soft_label=True,
            ...                                                         axis=axis,
            ...                                                         weight=weight,
            ...                                                         reduction=reduction)
            >>> print(paddle_loss_mean)
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True,
                   1.12801195)
C
Chen Long 已提交
2720

2721 2722 2723 2724
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
2725 2726
            "The value of 'reduction' in softmax_cross_entropy"
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
2727 2728
            % reduction
        )
2729
    if ignore_index > 0 and soft_label:
2730 2731
        raise ValueError(
            "When soft_label == True, the value of 'ignore_index' in softmax_cross_entropy"
2732 2733 2734
            "should be '-100', but received %s, which is not allowed."
            % ignore_index
        )
2735

2736
    input_dims = len(list(input.shape))
2737 2738 2739
    if input_dims == 0:
        raise ValueError('The dimention of input should be larger than zero!')

2740 2741 2742
    label_dims = len(list(label.shape))
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=axis)
2743

2744 2745 2746 2747 2748 2749 2750 2751
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
            'Expected nput_dims - 1 = label_dims or input_dims == label_dims\
             (got nput_dims{}, label_dims{})'.format(
                input_dims, label_dims
            )
        )

2752
    if in_dynamic_mode():
2753
        if not soft_label:
2754 2755 2756
            valid_label = (
                paddle.cast(label != ignore_index, dtype=label.dtype) * label
            )
2757 2758 2759
        _, out = _C_ops.cross_entropy_with_softmax(
            input, label, soft_label, use_softmax, True, ignore_index, axis
        )
2760 2761 2762

        if weight is not None:
            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
2763
            if soft_label:
2764 2765 2766 2767
                # chajchaj:
                # weight's shape is C, where C is class num.
                # for 1d case: label's shape is [N,C], weight_gather's shape is N.
                # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
2768 2769 2770 2771 2772 2773
                weight_gather = paddle.matmul(
                    x=paddle.cast(label, weight.dtype),
                    y=weight,
                    transpose_x=False,
                    transpose_y=True,
                )
2774 2775 2776 2777
                out_shape = list(out.shape)
                weight_gather_reshape = reshape(weight_gather, shape=out_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)

2778
                out = _C_ops.multiply(out, weight_gather_reshape)
2779 2780 2781 2782 2783
            else:
                if input.shape[axis] != weight.shape[-1]:
                    raise ValueError(
                        "input's class_dimension({}) must equal to "
                        "weight's class_dimension({}) "
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
                        "when weight is provided".format(
                            input.shape[axis], weight.shape[-1]
                        )
                    )

                ignore_weight_mask = paddle.cast(
                    (label != ignore_index), out.dtype
                )
                if (
                    ignore_weight_mask.ndim > 1
                    and ignore_weight_mask.shape[axis] == 1
                ):
2796
                    # TODO: Temporarily use squeeze instead of squeeze_
2797 2798 2799
                    ignore_weight_mask = paddle.squeeze(
                        ignore_weight_mask, axis
                    )
2800
                if axis != -1 and axis != valid_label.ndim - 1:
2801 2802 2803 2804 2805 2806 2807 2808 2809
                    temp_perm = (
                        list(range(axis % valid_label.ndim))
                        + list(
                            range(
                                (axis % valid_label.ndim + 1), valid_label.ndim
                            )
                        )
                        + [axis % valid_label.ndim]
                    )
2810
                    weight_gather = _C_ops.gather_nd(
2811 2812
                        weight, valid_label.transpose(temp_perm)
                    )
2813
                else:
2814
                    weight_gather = _C_ops.gather_nd(weight, valid_label)
2815 2816 2817
                weight_gather = _C_ops.multiply(
                    weight_gather, ignore_weight_mask
                )
2818
                input_shape = list(label.shape)
2819 2820 2821
                weight_gather_reshape = reshape(
                    weight_gather, shape=input_shape
                )
2822
                out = paddle.cast(out, weight_gather_reshape.dtype)
2823
                out = _C_ops.multiply(out, weight_gather_reshape)
2824 2825 2826 2827 2828

        if reduction == "sum":
            #   because of fluid_softmax_with_cross_entropy op's inner logic,
            #   in the out tensor of this op, the loss of sample with class_index==ignore_index is 0
            #   so, reduce_sum all directly is ok
2829
            return _C_ops.sum(out, [], None, False)
2830 2831 2832 2833 2834 2835 2836
        elif reduction == "mean":
            # 1. if weight==none,
            #     numerator: reduce_sum all loss directly is ok causeof fluid_softmax_with_cross_entropy's inner logic
            #     denominator: count sample num with class_index!=ignore_index
            # 2. else
            #     numerator: loss's weighted sum
            #     denominator: cal the sum of weight where the sample's class_index!=ignore_index
H
huangjun12 已提交
2837 2838 2839
            is_ignore = label == ignore_index
            mask = ~is_ignore
            if paddle.count_nonzero(is_ignore) > 0:  # ignore label
2840
                out_sum = _C_ops.sum(out, [], None, False)
2841 2842 2843 2844 2845
                # for each label[i],set 1 or 0, according to ignore_index
                # mask[i]=0, if label[i]==ignore_index
                # mask[i]=1, otherwise
                if weight is None:
                    mask = paddle.cast(mask, dtype=out_sum.dtype)
2846
                    count = _C_ops.sum(mask, [], None, False)
2847 2848 2849
                    ret = out_sum / (count + (count == 0.0))
                else:
                    mask = paddle.cast(mask, weight_gather_reshape.dtype)
2850 2851 2852
                    weight_ignored = _C_ops.multiply(
                        mask, weight_gather_reshape
                    )
2853
                    weight_sum = _C_ops.sum(weight_ignored, [], None, False)
2854 2855 2856
                    ret = out_sum / (weight_sum + (weight_sum == 0.0))
                return ret
            elif weight is not None:
2857
                out_sum = _C_ops.sum(out, [], None, False)
2858 2859 2860
                total_weight = _C_ops.sum(
                    weight_gather_reshape, [], None, False
                )
2861 2862
                return out_sum / (total_weight + (total_weight == 0.0))
            else:
2863
                return _C_ops.mean_all(out)
2864 2865 2866 2867 2868 2869

        else:
            if input_dims - 1 == label_dims:
                out = paddle.squeeze(out, axis=axis)
            return out

姜永久 已提交
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
    else:
        check_variable_and_dtype(
            input,
            'input',
            ['float16', 'float32', 'float64'],
            'softmax_cross_entropy',
        )
        check_variable_and_dtype(
            label,
            'label',
            ['uint8', 'int8', 'int16', 'int32', 'int64', 'float32', 'float64'],
            'softmax_cross_entropy',
        )
        attrs = {
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': True,
            'axis': axis,
            'use_softmax': use_softmax,
        }
        helper = LayerHelper('softmax_with_cross_entropy', **locals())
        softmax = helper.create_variable_for_type_inference(dtype=input.dtype)
        out = helper.create_variable_for_type_inference(dtype=input.dtype)

        outputs = {'Softmax': softmax, 'Loss': out}
        helper.append_op(
            type='softmax_with_cross_entropy',
            inputs={'Logits': input, 'Label': label},
            outputs=outputs,
            attrs=attrs,
        )
2901

2902
        if weight is not None:
姜永久 已提交
2903 2904 2905 2906 2907 2908 2909
            check_variable_and_dtype(
                weight,
                'weight',
                ['float32', 'float64'],
                'softmax_cross_entropy',
            )
            weight_name = name if reduction == 'none' else None
2910
            if soft_label:
2911
                # chajchaj:
姜永久 已提交
2912
                # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
H
HydrogenSulfate 已提交
2913
                # weight's shape is C, where C is class num.
2914 2915
                # for 1d case: label's shape is [N,C], weight_gather's shape is N.
                # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
2916 2917 2918 2919 2920 2921
                weight_gather = paddle.matmul(
                    x=paddle.cast(label, weight.dtype),
                    y=weight,
                    transpose_x=False,
                    transpose_y=True,
                )
姜永久 已提交
2922

2923 2924 2925 2926
                out_shape = list(out.shape)
                weight_gather_reshape = reshape(weight_gather, shape=out_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)
            else:
2927 2928 2929 2930
                if input.shape[axis] != weight.shape[-1]:
                    raise ValueError(
                        "input's class_dimension({}) must equal to "
                        "weight's class_dimension({}) "
2931 2932 2933 2934 2935
                        "when weight is provided".format(
                            input.shape[axis], weight.shape[-1]
                        )
                    )

姜永久 已提交
2936 2937 2938
                valid_label = paddle.multiply(
                    paddle.cast(label != ignore_index, dtype=label.dtype), label
                )
2939
                ignore_weight_mask = paddle.cast(
姜永久 已提交
2940
                    (label != ignore_index), input.dtype
2941 2942 2943 2944 2945 2946 2947 2948
                )
                if (
                    ignore_weight_mask.ndim > 1
                    and ignore_weight_mask.shape[axis] == 1
                ):
                    ignore_weight_mask = paddle.squeeze(
                        ignore_weight_mask, axis
                    )
H
HydrogenSulfate 已提交
2949
                if axis != -1 and axis != valid_label.ndim - 1:
2950 2951 2952 2953 2954 2955 2956 2957 2958
                    temp_perm = (
                        list(range(axis % valid_label.ndim))
                        + list(
                            range(
                                (axis % valid_label.ndim + 1), valid_label.ndim
                            )
                        )
                        + [axis % valid_label.ndim]
                    )
姜永久 已提交
2959 2960
                    weight_gather = paddle.gather_nd(
                        weight, paddle.transpose(valid_label, temp_perm)
2961
                    )
2962
                else:
姜永久 已提交
2963 2964
                    weight_gather = paddle.gather_nd(weight, valid_label)
                weight_gather = paddle.multiply(
2965 2966
                    weight_gather, ignore_weight_mask
                )
姜永久 已提交
2967

2968
                input_shape = list(label.shape)
2969 2970 2971
                weight_gather_reshape = reshape(
                    weight_gather, shape=input_shape
                )
姜永久 已提交
2972
            out = paddle.multiply(out, weight_gather_reshape, name=weight_name)
2973

2974
        if reduction == "sum":
姜永久 已提交
2975
            return paddle.sum(out, name=name)
2976
        elif reduction == "mean":
姜永久 已提交
2977 2978
            if ignore_index >= 0:
                out_sum = paddle.sum(out, name=name)
H
HydrogenSulfate 已提交
2979 2980 2981
                # for each label[i],set 1 or 0, according to ignore_index
                # mask[i]=0, if label[i]==ignore_index
                # mask[i]=1, otherwise
姜永久 已提交
2982
                mask = label != ignore_index
2983
                if weight is None:
2984
                    mask = paddle.cast(mask, dtype=out_sum.dtype)
姜永久 已提交
2985
                    count = paddle.sum(mask, name=name)
2986
                    ret = out_sum / (count + (count == 0.0))
2987 2988
                else:
                    mask = paddle.cast(mask, weight_gather_reshape.dtype)
姜永久 已提交
2989
                    weight_ignored = paddle.multiply(
2990 2991
                        mask, weight_gather_reshape
                    )
姜永久 已提交
2992
                    weight_sum = paddle.sum(weight_ignored, name=name)
2993
                    ret = out_sum / (weight_sum + (weight_sum == 0.0))
2994 2995
                return ret
            elif weight is not None:
姜永久 已提交
2996 2997
                out_sum = paddle.sum(out, name=name)
                total_weight = paddle.sum(weight_gather_reshape)
2998
                return out_sum / (total_weight + (total_weight == 0.0))
2999
            else:
姜永久 已提交
3000 3001
                return paddle.mean(out, name=name)

3002
        else:
3003 3004 3005
            if input_dims - 1 == label_dims:
                out = paddle.squeeze(out, axis=axis)

姜永久 已提交
3006
            return out
3007 3008


3009 3010 3011 3012 3013 3014 3015 3016 3017
def sigmoid_focal_loss(
    logit,
    label,
    normalizer=None,
    alpha=0.25,
    gamma=2.0,
    reduction='sum',
    name=None,
):
3018
    r"""
3019 3020 3021 3022 3023 3024
    `Focal Loss <https://arxiv.org/abs/1708.02002>`_ is proposed to address the
    foreground-background class imbalance for classification tasks. It down-weights
    easily-classified examples and thus focuses training on hard examples. For example,
    it is used in one-stage object detection where the foreground-background class
    imbalance is extremely high.

3025
    This operator measures focal loss function as follows:
3026 3027

    .. math::
3028
           Out = -Labels * alpha * {(1 - \sigma(Logit))}^{gamma}\log(\sigma(Logit)) - (1 - Labels) * (1 - alpha) * {\sigma(Logit)}^{gamma}\log(1 - \sigma(Logit))
3029

3030
    We know that :math:`\sigma(Logit) = \frac{1}{1 + \exp(-Logit)}`.
3031 3032 3033 3034 3035

    Then, if :attr:`normalizer` is not None, this operator divides the
    normalizer tensor on the loss `Out`:

    .. math::
3036
           Out = \frac{Out}{normalizer}
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052

    Finally, this operator applies reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`.
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target ``label`` is 0 for the negative class and is 1 for the positive class.

    Args:
        logit (Tensor): The input logit tensor. The shape is [N, *], where N is batch_size,
            `*` means any number of additional dimensions. The ``logit`` is usually the
            output of a convolution layer. Available dtype is float32, float64.
        label (Tensor): The target label tensor with the same shape as
            ``logit``. The target label whose value should be numbers between 0 and 1.
            Available dtype is float32, float64.
        normalizer (Tensor, optional): The number normalizes the focal loss. It has to be
3053 3054
            a 1-D Tensor with shape `[1, ]` or 0-D Tensor with shape `[]`. The data type
            is float32, float64. For object detection task, it is the number of positive samples.
3055 3056
            If set to None, the focal loss will not be normalized. Default is None.
        alpha(int|float, optional): Hyper-parameter to balance the positive and negative example,
3057
            it should be between 0 and 1.  Default value is set to 0.25.
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
        gamma(int|float, optional): Hyper-parameter to modulate the easy and hard examples.
            Default value is set to 2.0.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'sum'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3070
        Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[]`, otherwise the shape is the same as ``logit``. The same dtype as ``logit`` tensor.
3071 3072 3073 3074 3075

    Examples:

        .. code-block:: python

3076
            >>> import paddle
3077

3078 3079 3080 3081 3082 3083 3084 3085 3086
            >>> logit = paddle.to_tensor([[0.97, 0.91, 0.03], [0.55, 0.43, 0.71]], dtype='float32')
            >>> label = paddle.to_tensor([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]], dtype='float32')
            >>> one = paddle.to_tensor([1.], dtype='float32')
            >>> fg_label = paddle.greater_equal(label, one)
            >>> fg_num = paddle.sum(paddle.cast(fg_label, dtype='float32'))
            >>> output = paddle.nn.functional.sigmoid_focal_loss(logit, label, normalizer=fg_num)
            >>> print(output)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
                   0.65782464)
3087 3088 3089 3090 3091 3092

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in sigmoid_focal_loss "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
3093 3094
            % reduction
        )
3095 3096

    if normalizer is not None:
3097 3098 3099 3100 3101 3102
        check_variable_and_dtype(
            normalizer,
            'normalizer',
            ['float32', 'float64'],
            'sigmoid_focal_loss',
        )
3103 3104 3105 3106
        normalizer_shape = list(normalizer.shape)
        normalizer_dims = len(normalizer_shape)
        if normalizer_dims > 1:
            raise ValueError(
3107
                "Expected zero or one dimension of normalizer in sigmoid_focal_loss but got {}.".format(
3108 3109 3110
                    normalizer_dims
                )
            )
3111

3112
    if in_dynamic_mode():
3113
        place = _current_expected_place()
3114
        one = _C_ops.full(logit.shape, float(1.0), logit.dtype, place)
3115

3116
        loss = _C_ops.sigmoid_cross_entropy_with_logits(
3117
            logit, label, None, False, -100
3118
        )
3119

3120
        pred = _C_ops.sigmoid(logit)
3121

3122 3123
        p_t = _C_ops.add(
            _C_ops.multiply(pred, label),
3124 3125 3126 3127
            _C_ops.multiply(
                _C_ops.subtract(one, pred), _C_ops.subtract(one, label)
            ),
        )
3128 3129

        alpha = fluid.dygraph.base.to_variable([alpha], dtype=loss.dtype)
3130 3131
        alpha_t = _C_ops.add(
            _C_ops.multiply(alpha, label),
3132 3133 3134 3135
            _C_ops.multiply(
                _C_ops.subtract(one, alpha), _C_ops.subtract(one, label)
            ),
        )
3136
        loss = _C_ops.multiply(alpha_t, loss)
3137 3138

        gamma = fluid.dygraph.base.to_variable([gamma], dtype=loss.dtype)
3139 3140
        gamma_t = _C_ops.pow(_C_ops.subtract(one, p_t), gamma)
        loss = _C_ops.multiply(gamma_t, loss)
3141 3142

        if normalizer is not None:
3143
            loss = _C_ops.divide(loss, normalizer)
3144 3145

        if reduction == "sum":
3146
            return _C_ops.sum(loss, [], None, False)
3147
        elif reduction == "mean":
3148
            return _C_ops.mean_all(loss)
3149 3150 3151

        return loss

姜永久 已提交
3152 3153 3154
    else:
        check_variable_and_dtype(
            logit, 'logit', ['float32', 'float64'], 'sigmoid_focal_loss'
3155
        )
姜永久 已提交
3156 3157
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'sigmoid_focal_loss'
3158
        )
3159

姜永久 已提交
3160 3161 3162 3163
        bce_name = None
        if reduction == 'none' and normalizer is None:
            bce_name = name
        loss = paddle.nn.functional.binary_cross_entropy_with_logits(
3164
            logit, label, None, reduction='none', name=bce_name
3165
        )
3166

姜永久 已提交
3167 3168
        pred = paddle.nn.functional.sigmoid(logit)
        p_t = pred * label + (1 - pred) * (1 - label)
3169

姜永久 已提交
3170 3171
        alpha_t = alpha * label + (1 - alpha) * (1 - label)
        loss = paddle.multiply(alpha_t, loss)
3172

姜永久 已提交
3173 3174
        gamma_t = paddle.pow((1 - p_t), gamma)
        loss = paddle.multiply(gamma_t, loss)
3175

姜永久 已提交
3176 3177 3178
        if normalizer is not None:
            normalizer_name = name if reduction == 'none' else None
            loss = paddle.divide(loss, normalizer, name=normalizer_name)
3179

姜永久 已提交
3180 3181 3182 3183
        if reduction == 'mean':
            loss = paddle.mean(loss, name=name)
        elif reduction == 'sum':
            loss = paddle.sum(loss, name=name)
3184

姜永久 已提交
3185
        return loss
3186 3187


3188 3189 3190
def multi_label_soft_margin_loss(
    input, label, weight=None, reduction="mean", name=None
):
Y
yangguohao 已提交
3191
    r"""
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
    Calculate a multi-class multi-classification
    hinge loss (margin-based loss) between input :math:`x` (a 2D mini-batch `Tensor`)
    and output :math:`y` (which is a 2D `Tensor` of target class indices).
    For each sample in the mini-batch:

    .. math::
        \text{loss}(x, y) = \sum_{ij}\frac{\max(0, 1 - (x[y[j]] - x[i]))}{\text{x.size}(0)}

    where :math:`x \in \left\{0, \; \cdots , \; \text{x.size}(0) - 1\right\}`, \
    :math:`y \in \left\{0, \; \cdots , \; \text{y.size}(0) - 1\right\}`, \
    :math:`0 \leq y[j] \leq \text{x.size}(0)-1`, \
    and :math:`i \neq y[j]` for all :math:`i` and :math:`j`.
    :math:`y` and :math:`x` must have the same size.
Y
yangguohao 已提交
3205

3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes, and if shape is more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label is the same as the shape of input.
        weight (Tensor,optional): a manual rescaling weight given to each class.
                If given, has to be a Tensor of size C and the data type is float32, float64.
                Default is ``'None'`` .
        reduction (str, optional): Indicate how to average the loss by batch_size,
                the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
                For more information, please refer to :ref:`api_guide_Name`.
Y
yangguohao 已提交
3220

3221 3222 3223 3224 3225
    Shape:
        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means number of classes, available dtype is float32, float64. The sum operationoperates over all the elements.
        label: N-D Tensor, same shape as the input.
        weight:N-D Tensor, the shape is [N,1]
        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.
Y
yangguohao 已提交
3226

3227 3228
    Returns:
        Tensor, The tensor variable storing the multi_label_soft_margin_loss of input and label.
Y
yangguohao 已提交
3229

3230 3231
    Examples:
        .. code-block:: python
Y
yangguohao 已提交
3232

3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
            >>> import paddle
            >>> import paddle.nn.functional as F
            >>> input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            >>> # label elements in {1., -1.}
            >>> label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)
            >>> loss = F.multi_label_soft_margin_loss(input, label, reduction='none')
            >>> print(loss)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
                   [3.49625897, 0.71111226, 0.43989015])
            >>> loss = F.multi_label_soft_margin_loss(input, label, reduction='mean')
            >>> print(loss)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
                   1.54908717)

Y
yangguohao 已提交
3247 3248 3249 3250
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'multi_label_soft_margin_loss' should be 'sum', 'mean' or 'none', "
3251 3252
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3253 3254

    if not (input.shape == label.shape):
3255 3256 3257 3258
        raise ValueError(
            "The input and label should have same dimension,"
            "but received {}!={}".format(input.shape, label.shape)
        )
Y
yangguohao 已提交
3259

3260
    if not in_dynamic_mode():
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
        check_variable_and_dtype(
            input,
            'input',
            ['float32', 'float64'],
            'multilabel_soft_margin_loss',
        )
        check_variable_and_dtype(
            label,
            'label',
            ['float32', 'float64'],
            'multilabel_soft_margin_loss',
        )
Y
yangguohao 已提交
3273

3274 3275 3276 3277
    loss = -(
        label * paddle.nn.functional.log_sigmoid(input)
        + (1 - label) * paddle.nn.functional.log_sigmoid(-input)
    )
Y
yangguohao 已提交
3278 3279

    if weight is not None:
3280
        if not in_dynamic_mode():
3281 3282 3283 3284 3285 3286
            check_variable_and_dtype(
                weight,
                'weight',
                ['float32', 'float64'],
                'multilabel_soft_margin_loss',
            )
Y
yangguohao 已提交
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
        loss = loss * weight

    loss = loss.mean(axis=-1)  # only return N loss values

    if reduction == "none":
        return loss
    elif reduction == "mean":
        return paddle.mean(loss)
    elif reduction == "sum":
        return paddle.sum(loss)


3299 3300
def hinge_embedding_loss(input, label, margin=1.0, reduction='mean', name=None):
    r"""
3301
    Calculates hinge_embedding_loss. Measures the loss given an input tensor :math:`x` and a labels tensor :math:`y`(containing 1 or -1).
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
    This is usually used for measuring whether two inputs are similar or dissimilar, e.g. using the L1 pairwise distance as :math:`x`,
    and is typically used for learning nonlinear embeddings or semi-supervised learning.

    The loss function for :math:`n`-th sample in the mini-batch is

    .. math::
        l_n = \begin{cases}
            x_n, & \text{if}\; y_n = 1,\\
            \max \{0, \Delta - x_n\}, & \text{if}\; y_n = -1,
        \end{cases}

    and the total loss functions is

    .. math::
        \ell(x, y) = \begin{cases}
            \operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
            \operatorname{sum}(L),  & \text{if reduction} = \text{'sum'.}
        \end{cases}

    where :math:`L = \{l_1,\dots,l_N\}^\top`.

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.
        label (Tensor): Label tensor containing 1 or -1, the data type is float32 or float64.
            The shape of label is the same as the shape of input.
        margin (float, optional): Specifies the hyperparameter margin to be used.
            The value determines how large the input need to be to calculate in
            hinge_embedding_loss. When label is -1, Input smaller than margin are minimized with hinge_embedding_loss.
            Default = 1.0
        reduction (str, optional): Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:

        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64. The sum operationoperates over all the elements.

        label: N-D Tensor, same shape as the input. tensor elements should containing 1 or -1, the data type is float32 or float64.

        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.

    Returns:
        Tensor. The tensor variable storing the hinge_embedding_loss of input and label.

    Examples:
        .. code-block:: python

3355 3356
            >>> import paddle
            >>> import paddle.nn.functional as F
3357

3358 3359 3360
            >>> input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            >>> # label elements in {1., -1.}
            >>> label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)
3361

3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
            >>> loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='none')
            >>> print(loss)
            Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
                   [[ 0., -2.,  0.],
                    [ 0., -1.,  2.],
                    [ 1.,  1.,  1.]])
            >>> loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='mean')
            >>> print(loss)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
                   0.22222222)
3372 3373 3374 3375 3376 3377

    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'hinge_embedding_loss' should be 'sum', 'mean' or 'none', "
3378 3379
            "but received {}.".format(reduction)
        )
3380

3381
    if not in_dynamic_mode():
3382 3383 3384 3385 3386 3387
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'hinge_embedding_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'hinge_embedding_loss'
        )
3388 3389

    zero_ = paddle.zeros([1], dtype=input.dtype)
3390 3391 3392
    loss = paddle.where(label == 1.0, input, zero_) + paddle.where(
        label == -1.0, paddle.nn.functional.relu(margin - input), zero_
    )
3393 3394 3395 3396 3397 3398 3399

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
3400 3401


3402 3403 3404
def cosine_embedding_loss(
    input1, input2, label, margin=0, reduction='mean', name=None
):
3405
    r"""
3406
    Compute the cosine embedding loss of Tensor ``input1``, ``input2`` and ``label`` as follows.
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421

    If label = 1, then the loss value can be calculated as follow:

    .. math::
        Out = 1 - cos(input1, input2)

    If label = -1, then the loss value can be calculated as follow:

    .. math::
        Out = max(0, cos(input1, input2)) - margin

    The operator cos can be described as follow:
     .. math::
        cos(x1, x2) = \frac{x1 \cdot{} x2}{\Vert x1 \Vert_2 * \Vert x2 \Vert_2}

3422 3423
    Parameters:
        input1 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, which can be 0, 'M' means the length of input array.
3424
                         Available dtypes are float32, float64.
3425
        input2 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, which can be 0, 'M' means the length of input array.
3426
                         Available dtypes are float32, float64.
3427
        label (Tensor): tensor with shape: [N] or [1], 'N' means the length of input array. The target labels values should be -1 or 1.
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
                         Available dtypes are int32, int64, float32, float64.
        margin (float, optional): Should be a number from :math:`-1` to :math:`1`,
                         :math:`0` to :math:`0.5` is suggested. If :attr:`margin` is missing, the
                         default value is :math:`0`.
        reduction (string, optional): Specifies the reduction to apply to the output:
                         ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
                         ``'mean'``: the sum of the output will be divided by the number of elements in the output
                         ``'sum'``: the output will be summed.
        name (str, optional): Name for the operation (optional, default is None).
                         For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the cosine embedding Loss of Tensor ``input1`` ``input2`` and ``label``.
            If `reduction` is ``'none'``, the shape of output loss is [N], the same as ``input`` .
3442
            If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [].
3443 3444 3445 3446

    Examples:
        .. code-block:: python

3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
            >>> import paddle

            >>> input1 = paddle.to_tensor([[1.6, 1.2, -0.5], [3.2, 2.6, -5.8]], 'float32')
            >>> input2 = paddle.to_tensor([[0.5, 0.5, -1.8], [2.3, -1.4, 1.1]], 'float32')
            >>> label = paddle.to_tensor([1, -1], 'int64')

            >>> output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='mean')
            >>> print(output)  # 0.21155193
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
                   0.21155193)
            >>> output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='sum')
            >>> print(output)  # 0.42310387
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
                   0.42310387)
            >>> output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='none')
            >>> print(output)  # [0.42310387, 0.        ]
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
                   [0.42310387, 0.        ])
3465 3466 3467 3468

    """
    if len(label.shape) != 1:
        raise ValueError(
3469 3470
            "1D target tensor expected, multi-target not supported"
        )
3471 3472 3473 3474

    if input1.shape != input2.shape:
        raise ValueError(
            "the shape of input tensor 1 should be equal to input tensor 2, but found inputs with "
3475 3476
            "different sizes"
        )
3477 3478 3479 3480 3481 3482 3483 3484

    if len(input1.shape) > 2:
        raise ValueError(
            "1D target tensor expects 1D or 2D input tensors, but found inputs with different sizes"
        )

    if input1.dtype not in [paddle.float32, paddle.float64]:
        raise ValueError(
3485 3486
            "The data type of input Variable must be 'float32' or 'float64'"
        )
3487
    if label.dtype not in [
3488 3489 3490 3491
        paddle.int32,
        paddle.int64,
        paddle.float32,
        paddle.float64,
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
    ]:
        raise ValueError(
            "The data type of label Variable must be 'int32', 'int64', 'float32', 'float64'"
        )

    prod_sum = (input1 * input2).sum(axis=-1)
    mag_square1 = paddle.square(input1).sum(axis=-1) + 10e-12
    mag_square2 = paddle.square(input2).sum(axis=-1) + 10e-12
    denom = paddle.sqrt(mag_square1 * mag_square2)
    cos = prod_sum / denom
    zeros = paddle.zeros_like(cos)
    pos = 1 - cos
    neg = paddle.clip(cos - margin, min=0)
    out_pos = paddle.where(label == 1, pos, zeros)
    out_neg = paddle.where(label == -1, neg, zeros)
    out = out_pos + out_neg

    if reduction == 'none':
        return out
    if reduction == 'mean':
        return paddle.mean(out, name=name)
    elif reduction == 'sum':
        return paddle.sum(out, name=name)
Y
yangguohao 已提交
3515 3516


3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
def triplet_margin_with_distance_loss(
    input,
    positive,
    negative,
    distance_function=None,
    margin=1.0,
    swap=False,
    reduction='mean',
    name=None,
):
Y
yangguohao 已提交
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
    r"""
    Measures the triplet loss given an input
    tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
    This is used for measuring a relative similarity between samples. A triplet
    is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
    examples` respectively). The shapes of all input tensors should be
    :math:`(N, D)`.

    The loss function for each sample in the mini-batch is:

    .. math::
        L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


    where the default distance function

    .. math::
        d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

3546
    or user can defined their own distance functions. `margin` is a nonnegative margin representing the minimum difference
Y
yangguohao 已提交
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
    between the positive and negative distances that is required for the loss to be 0. If `swap` is true, it will compare distance of (input, negative) with
    distance of (negative, positive) and change it to the smaller one. For more details see http://www.bmva.org/bmvc/2016/papers/paper119/paper119.pdf.

    Parameters:

        input (Tensor):Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor):Positive tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        negative (Tensor):Negative tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        distance_function (callable, optional): Quantifies the distance between two tensors. if not specified, 2 norm functions will be used.
3562

3563 3564
        margin (float, optional): A nonnegative margin representing the minimum difference
            between the positive and negative distances required for the loss to be 0. Default value is :math:`1`.
3565

Y
yangguohao 已提交
3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
        swap (bool, optional):The distance swap changes the negative distance to the swap distance (distance between positive samples
                and negative samples) if swap distance smaller than negative distance. Default: ``False``.

        reduction (str, optional):Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
3577

Y
yangguohao 已提交
3578 3579 3580 3581 3582 3583
    Returns:
        Output: Tensor. The tensor variable storing the triplet_margin_with_distance_loss of input and positive and negative.

    Examples:
        .. code-block:: python

3584 3585
            >>> import paddle
            >>> import paddle.nn.functional as F
Y
yangguohao 已提交
3586

3587 3588 3589 3590 3591 3592 3593
            >>> input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            >>> positive = paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            >>> negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            >>> loss = F.triplet_margin_with_distance_loss(input, positive, negative, margin=1.0, reduction='none')
            >>> print(loss)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
                   [0.        , 0.57496595, 0.        ])
Y
yangguohao 已提交
3594

3595 3596 3597 3598
            >>> loss = F.triplet_margin_with_distance_loss(input, positive, negative, margin=1.0, reduction='mean')
            >>> print(loss)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
                   0.19165532)
Y
yangguohao 已提交
3599 3600 3601

    """
    if reduction not in ['sum', 'mean', 'none']:
3602 3603 3604 3605 3606
        raise ValueError(
            "'reduction' in 'triplet_margin_with_distance_loss' "
            "should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3607 3608 3609 3610
    if margin < 0:
        raise ValueError(
            "The margin between positive samples and negative samples should be greater than 0."
        )
3611
    if not in_dynamic_mode():
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
        check_variable_and_dtype(
            input,
            'input',
            ['float32', 'float64'],
            'triplet_margin_with_distance_loss',
        )
        check_variable_and_dtype(
            positive,
            'positive',
            ['float32', 'float64'],
            'triplet_margin_with_distance_loss',
        )
        check_variable_and_dtype(
            negative,
            'negative',
            ['float32', 'float64'],
            'triplet_margin_with_distance_loss',
        )
Y
yangguohao 已提交
3630 3631

    if not (input.shape == positive.shape == negative.shape):
3632 3633 3634 3635 3636
        raise ValueError(
            "input's shape must equal to "
            "positive's shape and  "
            "negative's shape"
        )
Y
yangguohao 已提交
3637

3638 3639 3640
    distance_function = (
        distance_function
        if distance_function is not None
Y
yangguohao 已提交
3641
        else paddle.nn.PairwiseDistance(2)
3642
    )
Y
yangguohao 已提交
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653

    positive_dist = distance_function(input, positive)
    negative_dist = distance_function(input, negative)

    if swap:
        swap_dist = distance_function(positive, negative)
        negative_dist = paddle.minimum(negative_dist, swap_dist)

    if not paddle.all(positive_dist > 0) or not paddle.all(negative_dist > 0):
        raise ValueError(
            "The positive distance or negative distance should be greater than 0, "
3654 3655
            "The distance functions should be checked."
        )
Y
yangguohao 已提交
3656 3657 3658 3659 3660 3661 3662 3663 3664

    loss = paddle.clip(positive_dist - negative_dist + margin, min=0.0)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
Y
yangguohao 已提交
3665 3666


3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
def triplet_margin_loss(
    input,
    positive,
    negative,
    margin=1.0,
    p=2,
    epsilon=1e-6,
    swap=False,
    reduction='mean',
    name=None,
):
Y
yangguohao 已提交
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
    r"""
        Measures the triplet loss given an input
        tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
        This is used for measuring a relative similarity between samples. A triplet
        is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
        examples` respectively). The shapes of all input tensors should be
        :math:`(N, *)`.

        The loss function for each sample in the mini-batch is:

        .. math::
            L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


        where

        .. math::
            d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor): Positive tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        negative (Tensor): Negative tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        margin (float, Optional): Default: :math:`1`.

        p (int, Optional): The norm degree for pairwise distance. Default: :math:`2`.

        epsilon (float, Optional): Add small value to avoid division by zero,
            default value is 1e-6.

        swap (bool,Optional): The distance swap change the negative distance to the distance between
            positive sample and negative sample. For more details, see `Learning shallow convolutional feature descriptors with triplet losses`.
            Default: ``False``.


        reduction (str, Optional):Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``

        name (str, Optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output: Tensor. The tensor variable storing the triplet_margin_loss of input and positive and negative.

    Examples:
        .. code-block:: python

3735 3736
            >>> import paddle
            >>> import paddle.nn.functional as F
Y
yangguohao 已提交
3737

3738 3739 3740 3741 3742 3743 3744
            >>> input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            >>> positive = paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            >>> negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            >>> loss = F.triplet_margin_loss(input, positive, negative, margin=1.0, reduction='none')
            >>> print(loss)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
                   [0.        , 0.57496595, 0.        ])
Y
yangguohao 已提交
3745

3746 3747 3748 3749
            >>> loss = F.triplet_margin_loss(input, positive, negative, margin=1.0, reduction='mean')
            >>> print(loss)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
                   0.19165532)
Y
yangguohao 已提交
3750 3751 3752 3753 3754

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'triplet_margin_loss' should be 'sum', 'mean' or 'none', "
3755 3756
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3757 3758 3759 3760
    if margin < 0:
        raise ValueError(
            "The margin between positive samples and negative samples should be greater than 0."
        )
3761
    if not in_dynamic_mode():
3762 3763 3764 3765 3766 3767 3768 3769 3770
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'triplet_margin_loss'
        )
        check_variable_and_dtype(
            positive, 'positive', ['float32', 'float64'], 'triplet_margin_loss'
        )
        check_variable_and_dtype(
            negative, 'negative', ['float32', 'float64'], 'triplet_margin_loss'
        )
Y
yangguohao 已提交
3771 3772

    if not (input.shape == positive.shape == negative.shape):
3773 3774 3775 3776 3777
        raise ValueError(
            "input's shape must equal to "
            "positive's shape and  "
            "negative's shape"
        )
Y
yangguohao 已提交
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794

    distance_function = paddle.nn.PairwiseDistance(p, epsilon=epsilon)
    positive_dist = distance_function(input, positive)
    negative_dist = distance_function(input, negative)

    if swap:
        swap_dist = distance_function(positive, negative)
        negative_dist = paddle.minimum(negative_dist, swap_dist)

    loss = paddle.clip(positive_dist - negative_dist + margin, min=0.0)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
3795 3796


3797 3798 3799 3800 3801 3802 3803 3804 3805
def multi_margin_loss(
    input,
    label,
    p: int = 1,
    margin: float = 1.0,
    weight=None,
    reduction='mean',
    name=None,
):
Y
yangguohao 已提交
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
    r"""
        Measures a multi-class classification hinge loss between input :math:`input` and label :math:`label`:

        For i-th mini-batch sample, the loss in terms of the 1D input :math:`input_i` and scalar
        output :math:`label_i` is:

        .. math::
            \text{loss}(input_i, label_i) = \frac{\sum_{j} \max(0, \text{margin} - input_i[label_i] + input_i[j])^p}{\text{C}}

        where :math:`0 \leq j \leq \text{C}-1`, :math:`0 \leq i \leq \text{N}-1` and :math:`j \neq label_i`.

        Optionally, you can give non-equal weighting on the classes by passing
        a 1D :attr:`weight` tensor into the constructor.

        The loss function for i-th sample then becomes:

        .. math::
            \text{loss}(input_i, label_i) = \frac{\sum_{j} \max(0, weight[label_i] * (\text{margin} - input_i[label_i] + input_i[j]))^p}{\text{C}}


    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes.

        label (Tensor): Label tensor, the data type is int32 or int64. The shape of label is (N,)

        p (int, Optional): The power num. Default: :math:`1`.

        margin (float, Optional): Default: :math:`1`.

        weight (Tensor,optional): a manual rescaling weight given to each class.
                If given, has to be a Tensor of shape (C,) and the data type is float32, float64.
                Default is ``'None'`` .


        reduction (str, Optional):Indicate how to calculate the loss by batch_size.
            the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``

        name (str, Optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output: Tensor. The tensor variable storing the multi_margin_loss of input and label.

    Examples:
        .. code-block:: python

3856 3857
            >>> import paddle
            >>> import paddle.nn.functional as F
Y
yangguohao 已提交
3858

3859 3860 3861 3862 3863 3864
            >>> input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            >>> label = paddle.to_tensor([1, 2, 1], dtype=paddle.int32)
            >>> loss = F.multi_margin_loss(input, label, margin=1.0, reduction='none')
            >>> print(loss)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
                   [0.        , 0.66666663, 0.        ])
Y
yangguohao 已提交
3865 3866 3867 3868 3869

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'multi_margin_loss' should be 'sum', 'mean' or 'none', "
3870 3871
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3872

3873
    if not in_dynamic_mode():
3874 3875 3876 3877 3878 3879
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'multi_margin_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['int32', 'int64'], 'multi_margin_loss'
        )
Y
yangguohao 已提交
3880 3881 3882 3883
    if not (input.shape[0] == label.shape[0]):
        raise ValueError(
            "The label's shape[0] should be equal to input's shape[0], "
            "but received input's shape[0] {} and label's shape[0]:{}. ".format(
3884 3885 3886
                input.shape[0], label.shape[0]
            )
        )
Y
yangguohao 已提交
3887 3888 3889
    label = label.reshape((-1, 1))
    index_sample = paddle.index_sample(input, label)
    if weight is not None:
3890
        if not in_dynamic_mode():
3891 3892 3893
            check_variable_and_dtype(
                weight, 'weight', ['float32', 'float64'], 'multi_margin_loss'
            )
Y
yangguohao 已提交
3894 3895 3896
        if not (input.shape[1] == weight.shape[0]):
            raise ValueError(
                "The weight's shape[0] should be equal to input's shape[1]"
3897 3898 3899 3900
                "but received weight's shape[0]: {} and input's shape[1]: {}".format(
                    weight.shape[0], input.shape[1]
                )
            )
Y
yangguohao 已提交
3901 3902 3903
        weight = paddle.gather(weight, label, axis=0).reshape((-1, 1))
        loss = paddle.mean(
            paddle.pow(
3904 3905 3906 3907 3908
                paddle.clip(weight * (margin - index_sample + input), min=0.0),
                p,
            ),
            axis=1,
        ) - weight * (margin**p / paddle.shape(input)[1])
Y
yangguohao 已提交
3909
    else:
3910 3911 3912 3913 3914 3915 3916 3917 3918
        loss = (
            paddle.mean(
                paddle.pow(
                    paddle.clip(margin - index_sample + input, min=0.0), p
                ),
                axis=1,
            )
            - margin**p / paddle.shape(input)[1]
        )
Y
yangguohao 已提交
3919 3920 3921 3922 3923 3924 3925 3926 3927

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss


3928 3929
def soft_margin_loss(input, label, reduction='mean', name=None):
    """
3930

3931 3932 3933 3934 3935 3936 3937 3938
    The API measures the soft margin loss between input predictions ``input``
    and target labels ``label`` . It can be described as:

    .. math::
        Out = log(1 + exp((-label * input)))

    Parameters:

3939
        input (Tensor): The input predications tensor with shape: ``[N, *]``,
3940
            N is batch_size, `*` means any number of additional dimensions. The ``input`` ranges from -inf to inf.
3941
            Available dtype is float32, float64.
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958

        label (Tensor): The target labels tensor with the same shape as
            ``input``. The target labels which values should be numbers -1 or 1.
            Available dtype is int32, int64, float32, float64.

        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:

3959
        Output (Tensor): If ``reduction`` is ``'none'``, the shape of output is same as ``input`` , else the shape of output is [].
3960 3961 3962 3963

    Examples:
        .. code-block:: python

3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
            >>> import paddle
            >>> paddle.seed(2023)

            >>> input = paddle.to_tensor([[0.5, 0.6, 0.7],[0.3, 0.5, 0.2]], 'float32')
            >>> label = paddle.to_tensor([[1.0, -1.0, 1.0],[-1.0, 1.0, 1.0]], 'float32')
            >>> output = paddle.nn.functional.soft_margin_loss(input, label)
            >>> print(output)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
                   0.64022040)

            >>> input = paddle.uniform(shape=(5, 5), dtype="float32", min=0.1, max=0.8)
            >>> label = paddle.randint(0, 2, shape=(5, 5), dtype="int64")
            >>> label[label==0] = -1

            >>> output = paddle.nn.functional.soft_margin_loss(input, label, reduction='none')
            >>> print(output)
            Tensor(shape=[5, 5], dtype=float32, place=Place(cpu), stop_gradient=True,
                   [[1.10725629, 0.48778144, 0.56217247, 1.12581408, 0.51430041],
                    [0.90375793, 0.37761253, 0.43007556, 0.95089805, 0.43288314],
                    [1.16043591, 0.63015938, 0.51362717, 0.43617544, 0.57783306],
                    [0.81927848, 0.52558368, 0.59713912, 0.83100700, 0.50811619],
                    [0.82684207, 1.02064908, 0.50296998, 1.13461733, 0.93222517]])
3986

3987 3988 3989 3990
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in soft_margin_loss should be 'sum', "
3991 3992 3993
            "'mean' or 'none', but received %s, which is not allowed."
            % reduction
        )
3994

3995
    if not in_dynamic_mode():
3996
        fluid.data_feeder.check_variable_and_dtype(
3997 3998 3999 4000 4001 4002 4003 4004
            input, 'input', ['float32', 'float64'], 'soft_margin_loss'
        )
        fluid.data_feeder.check_variable_and_dtype(
            label,
            'label',
            ['int32', 'int64', 'float32', 'float64'],
            'soft_margin_loss',
        )
4005 4006

    if not (input.shape == label.shape):
4007
        raise ValueError("input's shape must equal to " "label's shape")
4008

4009
    label = paddle.cast(label, input.dtype)
4010 4011 4012 4013 4014 4015 4016 4017
    out = paddle.log(1 + paddle.exp(-label * input))

    if reduction == 'sum':
        return paddle.sum(out, name=name)
    elif reduction == 'mean':
        return paddle.mean(out, name=name)
    else:
        return out
Z
Zman 已提交
4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071


def gaussian_nll_loss(
    input,
    label,
    variance,
    full=False,
    epsilon=1e-6,
    reduction='mean',
    name=None,
):
    r"""Gaussian negative log likelihood loss.

    Gaussian negative log likelihood loss among ``input``, ``variance`` and
    ``label``. Note that the ``label`` is treated as samples from Gaussian distributions.
    This function is used to train a neural network predicts
    the ``input`` and ``variance`` of a gaussian distribution that ``label`` are supposed to
    be coming from. This means ``input`` and ``variance`` should be functions(the neural network) of some inputs.

    For a ``label`` having Gaussian distribution with ``input`` and ``variance`` predicted by neural network
    the loss is calculated as follows:

    .. math::
        \text{loss} = \frac{1}{2}\left(\log\left(\text{max}\left(\text{var},
        \ \text{epsilon}\right)\right) + \frac{\left(\text{input} - \text{label}\right)^2}
        {\text{max}\left(\text{var}, \ \text{epsilon}\right)}\right) + \text{const.}

    where :attr:`epsilon` is used for stability. By default, the constant term of
    the loss function is omitted unless :attr:`full` is ``True``. If ``variance`` is not the same
    size as ``input`` (due to a homoscedastic assumption), it must either have a final dimension
    of 1 or have one fewer dimension (with all other sizes being the same) for correct broadcasting.

    Args:
        input (Tensor): input tensor, :math:`(N, *)` or :math:`(*)` where :math:`*` means any number of additional
            dimensions. Expectation of the Gaussian distribution, available dtype is float32, float64.
        label (Tensor): target label tensor, :math:`(N, *)` or :math:`(*)`, same shape as the input, or same shape as the input
            but with one dimension equal to 1 (to allow for broadcasting). Sample from the Gaussian distribution, available dtype is float32, float64.
        variance (Tensor): tensor of positive variance(s), :math:`(N, *)` or :math:`(*)`, same shape as the input, or same shape as the input but
            with one dimension equal to 1, or same shape as the input but with one fewer
            dimension (to allow for broadcasting). One for each of the expectations
            in the input (heteroscedastic), or a single one (homoscedastic), available dtype is float32, float64.
        full (bool, optional): include the constant term in the loss
            calculation. Default: ``False``.
        epsilon (float, optional): value used to clamp ``variance`` (see note below), for
            stability. Default: 1e-6.
        reduction (str, optional): specifies the reduction to apply to the
            output:``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction
            will be applied, ``'mean'``: the output is the average of all batch
            member losses, ``'sum'``: the output is the sum of all batch member
            losses. Default: ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:

4072
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is same as ``input`` , else the shape of output is [].
Z
Zman 已提交
4073 4074 4075 4076

    Examples::
        .. code-block:: python

4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
            >>> import paddle
            >>> import paddle.nn.functional as F
            >>> paddle.seed(2023)

            >>> input = paddle.randn([5, 2], dtype=paddle.float32)
            >>> label = paddle.randn([5, 2], dtype=paddle.float32)
            >>> variance = paddle.ones([5, 2], dtype=paddle.float32)

            >>> loss = F.gaussian_nll_loss(input, label, variance, reduction='none')
            >>> print(loss)
            Tensor(shape=[5, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
                   [[0.21808575, 1.43013096],
                    [1.05245590, 0.00394560],
                    [1.20861185, 0.00000062],
                    [0.56946373, 0.73300570],
                    [0.37142906, 0.12038800]])

            >>> loss = F.gaussian_nll_loss(input, label, variance, reduction='mean')
            >>> print(loss)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
                   0.57075173)
Z
Zman 已提交
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147

    Note:
        The clamping of ``variance`` is ignored with respect to autograd, and so the
        gradients are unaffected by it.
    """

    # Check variance shape
    # If variance.shape == input.shape, the case is heteroscedastic and no further checks are needed.
    # Otherwise:
    if variance.shape != input.shape:
        # If variance is one dimension short of input, but the shape match otherwise, then this is a homoscedastic case.
        # e.g. input.shape = (10, 2, 3), variance.shape = (10, 2)
        # -> unsqueeze variance so that variance.shape = (10, 2, 1)
        # this is done so that broadcasting can happen in the loss calculation
        if input.shape[:-1] == variance.shape:
            variance = paddle.unsqueeze(variance, -1)
        # This checks if the shape match up to the final dimension, and the final dimension of variance is of shape 1.
        # This is also a homoscedastic case.
        # e.g. input.shape = (10, 2, 3), variance.shape = (10, 2, 1)
        elif (
            input.shape[:-1] == variance.shape[:-1] and variance.shape[-1] == 1
        ):  # Heteroscedastic case
            pass
        # If none of the above pass, then the shape of variance is incorrect.
        else:
            raise ValueError("variance is of incorrect shape")

    # Check validity of reduction mode
    if reduction != 'none' and reduction != 'mean' and reduction != 'sum':
        raise ValueError(reduction + " is not valid")

    check_variable_and_dtype(
        input,
        'Input',
        ['float32', 'float64'],
        'gaussian_nll_loss',
    )
    check_variable_and_dtype(
        label,
        'Label',
        ['float32', 'float64'],
        'gaussian_nll_loss',
    )
    check_variable_and_dtype(
        variance,
        'Variance',
        ['float32', 'float64'],
        'gaussian_nll_loss',
    )
    # Entries of variance must be non-negative
4148
    if not in_dynamic_mode():
Z
Zman 已提交
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
        condition = paddle.all(variance > 0)
        Assert(condition, [variance], 6)
    else:
        if input.dtype not in [paddle.float32, paddle.float64]:
            raise ValueError(
                "The data type of input Variable must be 'float32' or 'float64'"
            )
        if label.dtype not in [
            paddle.float32,
            paddle.float64,
        ]:
            raise ValueError(
                "The data type of label Variable must be 'float32', 'float64'"
            )
        if variance.dtype not in [paddle.float32, paddle.float64]:
            raise ValueError(
                "The data type of variance Variable must be 'float32', 'float64'"
            )
        if paddle.any(variance < 0):
            raise ValueError("variance has negative entry/entries")

    # Clamp for stability
    variance = variance.clone()
    with paddle.no_grad():
        variance = paddle.clip(variance, min=epsilon)
    # Calculate the loss
    loss = 0.5 * (
        paddle.log(variance) + paddle.square(input - label) / variance
    )
    if full:
        loss += 0.5 * math.log(2 * math.pi)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss