test_error_clip.py 2.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import sys

17
import paddle
18
from paddle import fluid
19 20 21 22 23

BATCH_SIZE = 128
CLIP_MAX = 2e-6
CLIP_MIN = -1e-6

P
pangyoki 已提交
24
paddle.enable_static()
25 26 27
prog = fluid.framework.Program()

with fluid.program_guard(main_program=prog):
G
GGBond8488 已提交
28
    image = paddle.static.data(name='x', shape=[-1, 784], dtype='float32')
29

C
Charles-hit 已提交
30 31 32
    hidden1 = paddle.static.nn.fc(x=image, size=128, activation='relu')
    hidden2 = paddle.static.nn.fc(x=hidden1, size=64, activation='relu')
    predict = paddle.static.nn.fc(x=hidden2, size=10, activation='softmax')
33

G
GGBond8488 已提交
34
    label = paddle.static.data(name='y', shape=[-1, 1], dtype='int64')
35

36 37 38
    cost = paddle.nn.functional.cross_entropy(
        input=predict, label=label, reduction='none', use_softmax=False
    )
39
    avg_cost = paddle.mean(cost)
40 41

prog_clip = prog.clone()
W
Wu Yi 已提交
42
prog_clip.block(0).var(hidden1.name)._set_error_clip(
43
    paddle.nn.clip.ErrorClipByValue(max=CLIP_MAX, min=CLIP_MIN)
44
)
45 46 47

avg_cost_clip = prog_clip.block(0).var(avg_cost.name)
fluid.backward.append_backward(loss=avg_cost)
48
fluid.backward.append_backward(
49
    loss=avg_cost_clip, callbacks=[paddle.nn.clip.error_clip_callback]
50
)
51 52 53 54

hidden1_grad = prog.block(0).var(hidden1.name + "@GRAD")
hidden1_grad_clip = prog_clip.block(0).var(hidden1.name + "@GRAD")

F
fengjiayi 已提交
55 56 57
hidden2_grad = prog.block(0).var(hidden2.name + "@GRAD")
hidden2_grad_clip = prog_clip.block(0).var(hidden2.name + "@GRAD")

58 59 60 61
train_reader = paddle.batch(
    paddle.reader.shuffle(paddle.dataset.mnist.train(), buf_size=8192),
    batch_size=BATCH_SIZE,
)
62 63 64 65 66 67 68 69 70 71 72

place = fluid.CPUPlace()
exe = fluid.Executor(place)
feeder = fluid.DataFeeder(feed_list=[image, label], place=place)
exe.run(fluid.default_startup_program())

count = 0
for data in train_reader():
    count += 1
    if count > 5:
        break
73 74 75
    out1, out2 = exe.run(
        prog, feed=feeder.feed(data), fetch_list=[hidden1_grad, hidden2_grad]
    )
F
fengjiayi 已提交
76 77 78
    out1_clip, out2_clip = exe.run(
        prog_clip,
        feed=feeder.feed(data),
79 80 81 82 83 84
        fetch_list=[hidden1_grad_clip, hidden2_grad_clip],
    )
    if not (
        (out1.clip(min=CLIP_MIN, max=CLIP_MAX) == out1_clip).all()
        and (out2 == out2_clip).all()
    ):
85
        sys.exit(1)
86

87
sys.exit(0)